Use in Practice




Simulation goals

U High integrity representation of the dynamic,
connected and non-linear physical processes that
govern the different performance aspects that impact
on the overall acceptability of buildings and their
energy supply systems, existing or planned.

U Performance domain conflation to represent the
interactions and conflicts that occur between problem
parts and give rise to the need for practitioners to make
performance trade-offs.

U Design process integration to embed high fidelity tools
within work practices in a manner that adds value and,
in the long term, supports virtual design through the
interactive manipulation of a design hypothesis with
performance feedback in real time.




Virtual design benefits

Integrated simulation helps practitioners to:
* conform to legislative requirements;
» provide the requisite levels of comfort;
* attain indoor air quality standards;
* embody high levels of new and RE technologies;
* incorporate innovative EE & DSM solutions;
* lessen environmental impact.

Defines a new best practice:
* respects temporal aspects and interactions;
* 1ntegrates all technical domains;
* supports co-operative working;
* links life cycle performance to health & environmental impact;
* use set to expand in Europe with the advent of the EPBD.

The approach is rational:
* gradual evolution of the problem description;
* action taken against performance outputs at discrete stages.




Components of an integrated energy simulation program

Databases

climate materials components profiles past projects

Project Manager _
Support ‘ | Simulator

. = building
visualisation

database
management

fluid/power
flow
control

HVAC
lighting

Performance assessment and reporting

results analysis 1PV standard reports

Issues: database maintenance; project management; problem abstraction.




Simulation in design: behaviour follows description

( pre-constructed dbs ) performance indicators

( + geometry spec. ) visualisations, shading efc

( + constructional ) embodied energy etc

( + operational data

energy demand profiles ezc

( + boundary conditions

‘no-system’ comfort etc

( + special materials ) PV, switchable glazings etc

( + control systems ) energy use, system response etc

( + flow network ) ventilation, heat recovery etc

+ HVAC network )—>( component sizing, systems design etc )

+ CFD domain H TAQ, comfort, ventilation n efc )
+ power network H DSM, RE integration etc )

+ enhanced resolution H thermal bridging efc )

+ moisture network 9—6 condensation, mould & health )
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Automatic inclusion of content and plant entities in visualisations and daylight

utilisation studies.




Consideration of
comfort and well-
being.
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Combustion chamber temperature distribution snapshots corresponding to
different levels of stoichiometric excess air.
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Summer day import/ export for the 4 kW PV array.

Fluctuation of power between the consumer and LV network and

significant power export (-ve power) indicates the need for load
control.




Voltage (V)

With PV
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Voltage excursions with power
import/ export.
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Simulation used for action planning

2 Type of Entities

consumption & emissions monitoring;
city profiling & property classification;
trend analysis & action planning

metered
energy use

database of
interrogations actual & future
consumption

scenario simulations

e-services

information for government, local
authorities, institutions, industry, utilities,
designers, planners, citizens and others




Simulation used to match supply to demand
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Simulation-assisted design

Requires changes to work practices and adherence to standard performance assessment methods
(PAMs — action in blue, knowledge in yellow):

establish initial model for an unconstrained base case design;
calibrate model using reliable techniques;

assign boundary conditions of appropriate severity;

undertake integrated simulations using suitable applications;
express multi-domain performance in terms of suitable criteria;
identify problem areas as a function of criteria acceptability;
analyse results to identify cause of problems;

postulate remedies by relating parameters to problem causes;

l.
2.
3.
4.
5.
6.
7.
8.
9.

establish revised model to required resolution for each postulate;

. iterate from step 4 until overall performance is satisfactory;

p—
—_ O

. repeat from step 3 to establish design replicability.

Issues: PAMs required for all aspects: comfort, health & productivity; operational & embodied
energy, emissions & environmental impact, technology options appraisal, demand management,
embedded generation, regulations compliance, hybrid systems control, economics, etc.




Model calibration

Q

Q

A systematic adjustment of model parameters to
obtain an expected output.

Input-output pairs for multiple simulation cases are
recorded along with corresponding measurements of
the outputs and time-matched weather data.

These data are used to construct a ‘meta-model’ that
emulates the simulation tool being used.

The meta-model is used to determine the input
parameter values that will cause the tool to best
reproduce the measured performance.

The best-fit input parameter values are then imposed
on the initial model to yield the calibrated model.

Feedback Loop

Model Calibration and
Validation




Integrated view of performance

Version 1 | Version 2 Version 3
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Better tool integration necessary

The present: a
tool-box approach

design . tasks
process designer

decisions

decisions

) design support
designer process environment

implications

The future: design

. . . . process integration
Requires adjustments to design practice:

0 Management of the application process (who does what, when and where).

O Implementation of a performance assessment method whereby each step in the
process 1s demarcated and controlled (model definition and quality assurance,
calibration, simulation commissioning, results analysis, mapping to design
decisions efc.).

0 Formal method to translate simulation outcomes to design modification.




ppropriate data presentation

Qutput  Analysis  Help
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Termperature (C)

Salar gains; ZNZ00000 (model.aps)
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TAQ & comfort




Air flow and emissions
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Energy demand per unit time Base Case
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City action




Smart street concept

Renewable energy EV charging:
PV canopy deployed on car park roofs;
scenario simulations undertaken to assess
contribution under progressive charging regimes;
results used to inform decision on local battery
sizing.

Multi-organisation district heating:

university’s new district heating scheme modelled;
scenario simulations undertaken to assess system
extension to GCC headquarters building;

results used to assess feasibility of shared DH
throughout city.

Demand management:
Glasgow smart street model constructed;
scenario simulations undertaken to assess impact of
alternative demand control regimes;
results used to inform deployment of local solutions. |




Car safety




IBPSA

International Building Performance Simulation Association

www.ibpsa.org
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