

Simulation goals

- High integrity representation of the dynamic, connected and non-linear physical processes that govern the different performance aspects that impact on the overall acceptability of buildings and their energy supply systems, existing or planned.
- Performance domain conflation to represent the interactions and conflicts that occur between problem parts and give rise to the need for practitioners to make performance trade-offs.
- Design process integration to embed high fidelity tools within work practices in a manner that adds value and, in the long term, supports virtual design through the interactive manipulation of a design hypothesis with performance feedback in real time.

Virtual design benefits

Integrated simulation helps practitioners to:

- conform to legislative requirements;
- provide the requisite levels of comfort;
- attain indoor air quality standards;
- embody high levels of new and RE technologies;
- incorporate innovative EE & DSM solutions;
- lessen environmental impact.

Defines a new best practice:

- respects temporal aspects and interactions;
- integrates all technical domains;
- supports co-operative working;
- links life cycle performance to health & environmental impact;
- use set to expand in Europe with the advent of the EPBD.

The approach is rational:

- gradual evolution of the problem description;
- action taken against performance outputs at discrete stages.

Components of an integrated energy simulation program

Issues: database maintenance; project management; problem abstraction.

Simulation in design: behaviour follows description

Incremental model building - effort and reward

Automatic inclusion of content and plant entities in visualisations and daylight utilisation studies.

Consideration of comfort and wellbeing.

Thermal comfort

Smoke extract

Boiler efficiency, combustion chamber temperature and boiler flow/return water temperature corresponding to a typical start-up event – water temperature rises from ~20 C to 80 C, followed by on/off cycling.

Combustion chamber temperature distribution snapshots corresponding to different levels of stoichiometric excess air.

Summer day import/ export for the 4 kW PV array.

Fluctuation of power between the consumer and LV network and significant power export (-ve power) indicates the need for load control.

Supply voltage, 200 dwellings.

Impact on heating load of additional thermal mass for a given temperature set-point (solid line).

Impact of occupant behaviour on room temperature.

14

Simulation used for action planning

Simulation used to match supply to demand

Simulation-assisted design

Requires changes to work practices and adherence to standard performance assessment methods (PAMs – action in **blue**, knowledge in **yellow**):

- 1. establish initial model for an unconstrained base case design;
- 2. calibrate model using reliable techniques;
- 3. assign boundary conditions of appropriate severity;
- 4. undertake integrated simulations using suitable applications;
- 5. express multi-domain performance in terms of suitable criteria;
- 6. identify problem areas as a function of criteria acceptability;
- 7. analyse results to identify cause of problems;
- 8. postulate remedies by relating parameters to problem causes;
- 9. establish revised model to required resolution for each postulate;
- 10. iterate from step 4 until overall performance is satisfactory;
- 11. repeat from step 3 to establish design replicability.

Issues: PAMs required for all aspects: comfort, health & productivity; operational & embodied energy, emissions & environmental impact, technology options appraisal, demand management, embedded generation, regulations compliance, hybrid systems control, economics, *etc*.

Model calibration

- □ A systematic adjustment of model parameters to obtain an expected output.
- Input-output pairs for multiple simulation cases are recorded along with corresponding measurements of the outputs and time-matched weather data.
- □ These data are used to construct a 'meta-model' that emulates the simulation tool being used.
- □ The meta-model is used to determine the input parameter values that will cause the tool to best reproduce the measured performance.
- □ The best-fit input parameter values are then imposed on the initial model to yield the calibrated model.

Integrated view of performance

Better tool integration necessary

- □ Management of the application process (who does what, when and where).
- □ Implementation of a performance assessment method whereby each step in the process is demarcated and controlled (model definition and quality assurance, calibration, simulation commissioning, results analysis, mapping to design decisions *etc.*).
- □ Formal method to translate simulation outcomes to design modification.

Appropriate data presentation

Internal lighting

Visualisation

IAQ & comfort

Air flow and emissions

Integrating renewables: the Lighthouse Building

evaluating options

micro power system deployment

City action planning

Smart street concept

Renewable energy EV charging:

- PV canopy deployed on car park roofs;
- scenario simulations undertaken to assess contribution under progressive charging regimes;
- results used to inform decision on local battery sizing.

Multi-organisation district heating:

- university's new district heating scheme modelled;
- scenario simulations undertaken to assess system extension to GCC headquarters building;
- results used to assess feasibility of shared DH throughout city.

Demand management:

- Glasgow smart street model constructed;
- scenario simulations undertaken to assess impact of alternative demand control regimes;
- results used to inform deployment of local solutions.

Car safety

