

Calculating equation coefficients

Construction Conservation Equation
$\left(2 \rho_{\mathrm{I}}(\mathrm{t}+\delta \mathrm{t}) \mathrm{C}_{\mathrm{I}}(\mathrm{t}+\delta \mathrm{t})+\frac{2 \delta \mathrm{t} \mathrm{k}(\mathrm{t}+\delta \mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}}\right) \theta(\mathrm{I}, \mathrm{t}+\delta \mathrm{t})$
$-\frac{\delta \mathrm{t} \mathrm{k}(\mathrm{t}+\delta \mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}} \theta(\mathrm{I}-1, \mathrm{t}+\delta \mathrm{t})-\frac{\delta \mathrm{tk}(\mathrm{t}+\delta \mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}} \theta(\mathrm{I}+1, \mathrm{t}+\delta \mathrm{t})-\frac{\delta \mathrm{t} \mathrm{I}_{\mathrm{I}}(\mathrm{t}+\delta \mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}} \delta \mathrm{x}_{\mathrm{J}} \delta \mathrm{x}_{\mathrm{K}}}$
$=\left(2 \rho_{\mathrm{I}}(\mathrm{t}) \mathrm{C}_{\mathrm{I}}(\mathrm{t})-\frac{2 \delta \mathrm{t} \mathrm{k}(\mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}}\right) \theta(\mathrm{I}, \mathrm{t})$
$+\frac{\delta \mathrm{t} \mathrm{k}(\mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}} \theta(\mathrm{I}-1, \mathrm{t})+\frac{\delta \mathrm{tk}(\mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}} \theta(\mathrm{I}+1, \mathrm{t})+\frac{\delta \mathrm{t} \mathrm{I}_{\mathrm{I}}(\mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}} \delta \mathrm{x}_{\mathrm{J}} \delta \mathrm{x}_{\mathrm{K}}}$.

Surface Conservation Equation

Fluid Conservation Equation

The Sun

\square Core temperature 8×10^{6} to $40 \times 10^{6} \mathrm{~K}$.
\square Effective black body temperature of 6000 K .
\square Solar constant: extraterrestrial flux from the sun received on a unit area perpendicular to the direction of propagation - mean Sun/Earth distance value is $1353 \mathrm{~W} / \mathrm{m}^{2}$.
\square Actual extraterrestial radiation varies with time of year as earth-sun distance varies.

Energy from the sun

Atmospheric interactions

\square The greater the distance that the radiation passes through the atmosphere, the greater is the frequency dependent scattering. Spectra at ground level are often referred to particular 'air masses'.
\square Air Mass 1 is the thickness of the atmosphere vertically above sea level.
\square Air Mass 2 is double this thickness (equivalent to direct solar radiation at an altitude of 30 degrees).

Direct and diffuse radiation

\square Solar radiation reaches the Earth directly from the Sun) and diffusely after scattering in the atmosphere and reflected from surrounding objects.

On clear days around 90\% of the total solar radiation is direct.
\square Only direct radiation can be focussed.
\square The total radiation reaching a surface is the summation of the direct, sky diffuse and reflected components.

On heavily overcast days 100% of the solar radiation is diffuse.

Spectral distribution of short-wave solar radiation

NASA/ASTM Standard Spectral Irradiance

	Wavelength $(\mu \mathrm{m})$		
	$0-0.38$	$0.38-0.78$ (visible range)	>0.78
Fraction in range	0.07	0.47	0.46
Energy in range $\left(\mathrm{W} / \mathrm{m}^{2}\right)$	95	640	618

Short-wave radiation impacts

solar

dây light modeés

T. Muncer

Location coordinates

\square latitude - angle N or S above or below equator.
\square longitude - angle E or W from prime meridian (Greenwich).
\square Longitude difference angle from location to local time zone reference meridian (west -ve).

Solar declination

Solar time

$\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\mathrm{m}}= \pm \mathrm{L}_{\text {diff }} / 15+\left(\mathrm{e}_{\mathrm{t}} / 60\right)+\mathrm{d}_{\mathrm{s}}$
where,
$\mathrm{t}_{\mathrm{s}}=$ solar time
$\mathrm{t}_{\mathrm{m}}=$ local time
$\mathrm{L}_{\text {diff }}=$ longitude difference
$e_{t}=$ equation of time
$\mathrm{d}_{\mathrm{s}}=$ daylight saving time

Solar geometry

\square Declination
$\mathrm{d}=23.45 \sin (280.1+0.9863 \mathrm{Y})$
where $\mathrm{Y}=$ year day number (January $1=1$, December $31=365$)
\square Altitude
$\beta_{\mathrm{s}}=\sin ^{-1}\left[\cos \mathrm{~L} \cos \mathrm{~d} \cos \theta_{\mathrm{h}}+\sin \mathrm{L} \sin \mathrm{d}\right]$ where L is site latitude,
θ_{h} is hour angle $=15\left(12-\mathrm{t}_{\mathrm{s}}\right)$
\square Azimuth
$\alpha_{\mathrm{s}}=\sin ^{-1}\left[\cos \mathrm{~d} \sin \theta_{\mathrm{h}} / \cos \beta_{\mathrm{s}}\right]$

\square Incidence angle
$i_{\beta}=\cos ^{-1}\left[\sin \beta_{\mathrm{s}} \cos \left(90-\beta_{\mathrm{f}}\right)+\cos \beta_{\mathrm{s}} \cos \omega \sin \left(90-\beta_{\mathrm{f}}\right)\right]$
where $\omega=$ azimuth angle between sun and surface normal,
$\beta_{\mathrm{f}}=$ surface inclination angle

Solar radiation prediction (all W/m²)

I_{dn} - direct normal or "beam" (pyrheliometer)
I_{dh} - direct horizontal $\mathrm{I}_{\mathrm{dh}}=\mathrm{I}_{\mathrm{dn}} \sin \beta_{\mathrm{s}}$
I_{fh} - diffuse horizontal (pyranometer with shadow band)
I_{gh} - global horizontal (pyranometer or solarimeter)
$\mathrm{r}_{\mathrm{g}}-$ ground reflectivity
$I_{d \beta}$ - direct radiation on a surface of inclination β_{f}
$\mathrm{I}_{\mathrm{s} \beta}$ - sky diffuse radiation incident on a surface of inclination β_{f}
I_{r} - ground reflected radiation incident on a surface of inclination β_{f}

$$
\begin{aligned}
\mathrm{I}_{\mathrm{gh}} & =\mathrm{I}_{\mathrm{dh}}+\mathrm{I}_{\mathrm{fh}} \\
& =\mathrm{I}_{\mathrm{dn}} \sin \beta_{\mathrm{s}}+\mathrm{I}_{\mathrm{fh}}
\end{aligned}
$$

Solar data for simulation:
either: I_{gh} and I_{fh} or I_{dn} and I_{fh}

Solar radiation measurement

Pyranometer measures the total solar irradiance on a planar surface.

\square Pyrheliometer measures direct beam solar radiation by tracking the sun's position throughout the day.

Solar radiation measurement

\square Shaded pyranometer measures diffuse solar irradiance on a (usually horizontal) surface.
\square The shade blocks direct radiation and some diffuse radiation (so need to adjust readings).

Integrated pyranometer measures both total and diffuse radiation on a (usually horizontal) surface.

Diffuse is calculated based on shading patterns from internal shades

Short-wave flow-paths

A - reflected shortwave flux
B - flux emission by convection and longwave radiation
C - shortwave flux transmission to cause opaque surface insolation
D - shortwave transmission to cause transparent surface insolation
E - shortwave transmission to adjacent zone
F - enclosure reflections
G - shortwave loss
H - solar energy penetration by transient conduction
I - solar energy absorption prior to retransmission by the processes of B.

Short-wave radiation calculation

Intensity of direct radiation on surface of inclination β :

$$
I_{d \beta}=I_{d h} \cos i_{\beta /} \sin \beta_{s}
$$

Intensity of diffuse radiation on same surface ground reflected: $I_{r \beta}=0.5\left[1-\cos \left(90-\beta_{f}\right)\right]\left(I_{d h}+I_{f h}\right) r_{g}$ where r_{g} is the ground reflectance
sky component: $\mathrm{I}_{\mathrm{s} \beta}=0.5\left[1+\cos \left(90-\beta_{f}\right)\right] \mathrm{I}_{\mathrm{fh}}$
assuming an isotropic diffuse sky
i_{β} - angle between the incident beam and the surface normal vector
ω - surface-solar azimuth $\left(=\mid \alpha_{\mathrm{s}}-\alpha_{\mathrm{f}}\right)$
α_{f}, β_{f} - surface azimuth and inclination respectively
$\alpha_{s}, \beta_{\mathrm{s}}$ - solar azimuth and elevation respectively

In practice the sky is not isotropic and so empirically-based models that correct for circumsolar and horizon brightening are employed: sky component:

$$
\begin{aligned}
& I_{s \beta}=I_{f h}\left(\frac{1+\cos \left(90-\beta_{f}\right)}{2}\right) \times\left(1+\left[1-\left(\frac{I_{f h}^{2}}{I_{\mathrm{gh}}^{2}}\right)\right] \sin ^{3}\left(\frac{\beta_{\mathrm{f}}}{2}\right)\right) \\
& \times\left(1+\left[1-\left(\frac{\mathrm{I}^{2} \mathrm{fh}}{\mathrm{I}_{\mathrm{gh}}^{2}}\right)\right] \cos ^{2}\left(\mathrm{i}_{\beta}\right) \sin ^{3}\left(90-\beta_{\mathrm{s}}\right)\right)
\end{aligned}
$$

Angle of incidence: $\mathrm{i}_{\beta}=\cos ^{-1}\left(\sin \beta_{s} \cos \left(90-\beta_{f}\right)+\cos \beta_{s} \cos \omega \sin \left(90-\beta_{f}\right)\right)$

Numerical approach using 145 sky vault patches.

Surface-solar angles

Solar angle tables (altitude \& azimuth)

$\begin{gathered} \text { York } \\ \substack{\text { Lut } \\ \text { tude }} \end{gathered}$	Sum	Jan. 21		Feb. 21		Mar. 21		Apr. 12		May 22		June 21		Juty 23		Aug. 21		Sept. 21		Oct. 22		Nor. 21		Dee 21		${ }_{\text {Tilue }}^{\text {Sum }}$								
		Ath	Az	Att	Ax	Alt	λ_{2}	At	$A z$	Ath	Az	Att	Az	Alt	At	Ah	Az	At	Az	Att	A 2	At	Ax	At	Az									
40°	06	8125				$\begin{array}{rr} 0 & 90 \\ 11 & 100 \\ 22 & 110 \end{array}$		$\begin{array}{rr} 8 & 81 \\ 19 & 90 \\ 31 & 100 \end{array}$		$\begin{array}{ll} 13 & 74 \\ 24 & 83 \\ 36 & 92 \end{array}$		$\left\lvert\, \begin{array}{ll} 15 & 72 \\ 26 & 80 \\ 37 & 89 \end{array}\right.$		$13 \quad 74$		881		$0 \quad 90$						6127		060708								
	07			24	83			1	90				11100	4108																				
	08			$36 \quad 92$	31100			22110	$15 \quad 118$		8125																							
	09	$\left\|\begin{array}{ll} 17 & 136 \\ 24 & 149 \\ 28 & 164 \end{array}\right\|$			24130		33123		42112		$47 \quad 104$		49100		47104		$42 \quad 112$		$\begin{array}{llll}33 & 123\end{array}$		$24 \quad 130$		17136		14138		0910							
	10			$\begin{array}{\|ll\|} 32 & 145 \\ 37 & 161 \end{array}$		$42 \quad 138$			52128		$58 \quad 118$		$60 \quad 114$		58118		52128		$42 \quad 138$		$32 \quad 145$		24149		$21 \quad 151$									
	11			48	157	59		67				69	138	67		59	150	$\left\|\begin{array}{ll} 48 & 157 \\ 50 & 180 \end{array}\right\|$		37161		$28 \quad 164$		25165		10								
	12	30180				39180		$50 \quad 180$		62180				$70 \quad 180$		74180				70180		62180						27180		12				
	13	$\begin{array}{lll} 28 & 196 \\ 24 & 211 \\ 17 & 224 \end{array}$		$\begin{array}{ll} 37 & 199 \\ 32 & 215 \\ 24 & 230 \end{array}$		$\begin{array}{ll} 48 & 203 \\ 42 & 222 \end{array}$		59210		67218				69222		67218		59210		48203		$37 \quad 199$		$\begin{array}{lll}30 & 180 \\ 28 & 196\end{array}$		$\begin{aligned} & 25195 \\ & 21 \quad 209 \end{aligned}$$14222$		$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$						
	14				232			58	242	60		58	242	52		42			215	24	211													
	15				237	$\left\|\begin{array}{rr} 42 & 248 \\ 31 & 260 \\ 19 & 270 \\ 8 & 279 \end{array}\right\|$			256	49	260	47	256	42	248	33	237	24	230	17	224													
	16	8235				$\begin{array}{rr} 15 & 242 \\ 4 & 252 \end{array}$		$\left\|\begin{array}{rr} 22 & 250 \\ 11 & 260 \\ 0 & 270 \end{array}\right\|$		36268 24277 13286		$\left\lvert\, \begin{array}{ll} 37 & 271 \\ 26 & 280 \\ 15 & 288 \end{array}\right.$		$\begin{array}{ll} 36 & 268 \\ 24 & 277 \\ 13 & 286 \end{array}$		$\begin{array}{rr} 31 & 260 \\ 19270 \\ 8279 \end{array}$		$\left\|\begin{array}{rr} 22 & 250 \\ 11 & 260 \\ 0 & 270 \end{array}\right\|$		$\begin{array}{r} 15242 \\ 4 \quad 252 \end{array}$		8235		6233		161718								
	17																																	
	18																																	
	06	5125		$\begin{array}{rr} 3 & 108 \\ 12 & 120 \end{array}$		$\left\|\begin{array}{rr} 0 & 90 \\ 10 & 101 \\ 21 & 112 \end{array}\right\|$		$\begin{array}{rr} 8 & 81 \\ 19 & 92 \\ 30 & 103 \end{array}$		$\begin{array}{ll} 14 & 75 \\ 25 & 85 \\ 35 & 96 \end{array}$		$\begin{array}{\|ll} 16 & 73 \\ 27 & 83 \\ 37 & 93 \end{array}$		$\begin{array}{ll} 14 & 75 \\ 25 & 85 \\ 35 & 96 \end{array}$		$\left.\begin{array}{rr} 8 & 81 \\ 19 & 92 \\ 30 & 103 \end{array} \right\rvert\,$		$\begin{array}{rr} 0 & 90 \\ 10 & 101 \\ 21 & 112 \end{array}$		$\begin{array}{r} 3108 \\ 12120 \end{array}$				2127		060708								
	07																																	
	08																																	
	09	$\begin{array}{ll} 13 & 137 \\ 19 & 150 \\ 24 & 165 \end{array}$		$\begin{array}{ll} 21 & 132 \\ 28 & 146 \\ 32 & 162 \end{array}$		$\left\|\begin{array}{ll} 30 & 125 \\ 38 & 141 \\ 43 & 159 \end{array}\right\|$		$40 \quad 116$ $48 \quad 133$ 55154		$\left\|\begin{array}{ll} 46 & 108 \\ 55 & 125 \\ 62 & 148 \end{array}\right\|$		$\begin{array}{\|ll} 48 & 105 \\ 58 & 121 \\ 65 & 146 \end{array}$		$\begin{array}{ll} 46 & 108 \\ 55 & 125 \\ 62 & 148 \end{array}$		$\left\|\begin{array}{ll} 40 & 116 \\ 48 & 133 \\ 55 & 154 \end{array}\right\|$		$\left\lvert\, \begin{array}{cc} 30 & 125 \\ 38 & 141 \end{array}\right.$		21132		13137		$\begin{array}{lll}10 & 139 \\ 16 & 152\end{array}$		091011								
	10				146				150																									
	11				159				162				165																					
45°	12	25180				34180				45180				57180				65180		$68 \quad 180$		65180		57180		45180		34180		25180		22180		12
	13	$\begin{array}{r} 24195 \\ 19210 \\ 13223 \\ 5235 \end{array}$				$\begin{array}{ll} 32 & 198 \\ 28 & 214 \\ 21 & 228 \end{array}$				$\left\|\begin{array}{lll} 43 & 201 \\ 38 & 219 \\ 30 & 235 \end{array}\right\|$		$\begin{array}{ll} 55 & 206 \\ 48 & 227 \\ 40 & 244 \end{array}$		$62 \quad 212$ $55 \quad 235$ 46252		$\left\|\begin{array}{ll} 65 & 214 \\ 58 & 239 \\ 48 & 255 \end{array}\right\|$		$\begin{array}{ll} 62 & 212 \\ 55 & 235 \\ 46 & 252 \end{array}$		$\begin{array}{ll} 55 & 206 \\ 48 & 227 \\ 40 & 244 \end{array}$		$\begin{array}{lll} 43 & 201 \\ 38 & 219 \\ 30 & 235 \end{array}$		$\begin{array}{ll} 32 & 198 \\ 28 & 214 \end{array}$		$\begin{array}{lll} 24 & 195 \\ 19 & 210 \\ 13 & 223 \end{array}$		$\begin{aligned} & 20195 \\ & 16208 \\ & 10221 \end{aligned}$		$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \end{aligned}$				
	14																																	
	15				228																													
	16			$\begin{array}{rr} 12 & 240 \\ 3 & 252 \end{array}$		$\begin{array}{r} 21248 \\ 10259 \\ 0270 \end{array}$		$\begin{array}{rr} 30 & 257 \\ 19 & 268 \\ 8 & 279 \end{array}$		$\begin{array}{ll} 35 & 264 \\ 25 & 275 \\ 14 & 285 \end{array}$		$\left\lvert\, \begin{array}{ll} 37 & 267 \\ 27 & 277 \\ 16 & 287 \end{array}\right.$		$\begin{array}{lll} 35 & 264 \\ 25 & 275 \\ 14 & 285 \end{array}$		$\begin{array}{r} 30257 \\ 19268 \\ 8279 \end{array}$		$\begin{array}{rr} 21 & 248 \\ 10 & 259 \\ 0 & 270 \end{array}$			240		235		233									
	17				252																													
	18																																	

Solar tables ($\mathrm{I}_{\mathrm{dv}}{\left.\underline{\&} \mathbf{I}_{\mathrm{dh}}\right)}^{\mathbf{~}}$

Table A2.35 (m) Basic direct solar irradiances on vertical, I_{DV}, and horizontal, I_{OH}, surfaces and basic diffuse (cloudy and clear sky) solar irradiances on horizontal surfaces, $I_{d H},\left(\mathrm{~W} / \mathrm{m}^{2}\right)$.
$55^{\circ} \mathrm{N}$

Date	Orienuntion	Daily mean	Sun Time																		
			03	04	05	06	97	08	\cdots	10	11	12	13	14	15	16	17	18	19	20	21
June 21	N	35		95	175	135	25	0	0	0	0	0	0	0	0	0	25	135	175	95	
	NE	85		160	385	485	470	365	205	30	0	0	0	0	0	0	0	0	0	0	
	E	145		130	365	550	640	630	545	395	210	0	0	0	0	0	0	0	0	0	
	SE	145		20	135	290	435	530	¢65	540	455	325	160	0	0	0	0	0	0	0	
	S	115		0	0	0	0	115	255	365	435	465	435	365	255	115	0	0	0	0	
	SW	145		0	0	0	0	0	0	0	160	325	455	540	565	530	435	290	135	20	
	w	145		0	0	0	0	0	0	0	0	0	210	395	545	630	640	550	365	130	
	Nw	85		0	0	0	0	0	0	0	0	0	0	20	205	365	470	485	385	160	
	H	290		10	80	195	335	465	585	675	735	755	735	675	585	465	335	195	80	10	
Diff (Cldy) Diff(Clr)		$\begin{array}{r} 115 \\ 50 \end{array}$		$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 95 \\ & 60 \end{aligned}$	$\begin{array}{r} 140 \\ 75 \end{array}$	$\begin{array}{r} 180 \\ 80 \end{array}$	$\begin{array}{r} 225 \\ 90 \end{array}$	$\begin{array}{r} 260 \\ 95 \end{array}$	$\begin{aligned} & 285 \\ & 100 \end{aligned}$	$\begin{gathered} 295 \\ 100 \end{gathered}$	$\begin{aligned} & 285 \\ & 100 \end{aligned}$	$\begin{array}{r} 260 \\ 95 \end{array}$	$\begin{array}{r} 225 \\ 90 \end{array}$	$\begin{array}{r} 180 \\ 80 \end{array}$	$\begin{array}{r} 140 \\ 75 \end{array}$	$\begin{aligned} & 95 \\ & 60 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	
July 23 and May 22	\pm	25		25	135	110	0	0					0	0	0	0	0	110	135	25	
	NE	75		45	310	445	445	345	185	0	0	0	0	0	0	0	0	0	0	0	
	E	135		35	305	520	625	630	545	400	210	0	0	0	0	0	0	0	0	0	
	SE	150		5	120	290	445	545	585	565	480	350	185	0	0	0	0	0	0	0	
	S	130		0	0	0	0	145	285	395	470	495	470	395	285	145	0	0	0	0	
	SW	150		0	0	0	0	0	0	0	185	350	480	565	585	545	445	290	120	5	
	w	135			0	0	0	0	0	0	0	0	210	400	545	630	625	520	305	35	
	NW	75		0	0	0	0	0	0	0	0	0	0	0	185	345	445	445	310	45	
	H	265		0	50	160	295	430	550	640	700	720	700	640	550	430	295	160	50	0	
Diff (Cldy) Diff(Clr)		$\begin{array}{r} 110 \\ 50 \end{array}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	$\begin{aligned} & 85 \\ & 55 \end{aligned}$	$\begin{array}{r} 125 \\ 70 \end{array}$	$\begin{array}{r} 170 \\ 80 \end{array}$	$\begin{array}{r} 210 \\ 90 \end{array}$	$\begin{array}{r} 245 \\ 95 \end{array}$	$\begin{aligned} & 270 \\ & 100 \end{aligned}$	$\begin{aligned} & 280 \\ & 100 \end{aligned}$	$\begin{aligned} & 270 \\ & 100 \end{aligned}$	$\begin{array}{r} 245 \\ 95 \end{array}$	$\begin{array}{r} 210 \\ 90 \end{array}$	$\begin{array}{r} 170 \\ 80 \end{array}$	125 70	85 55	$\begin{aligned} & 40 \\ & 35 \end{aligned}$	5 5	
August 22 and April 22	N	5			20	45	0	0	0	0	0	0	0	0	0			45			
	NE	45			60	295	355	285	135	0	0	0	0	0	0	0	0	0	0		
	E	115			65	370	555	605	540	400	215	0	0	0	0	0	0	0	0		
	SE	155			30	230	430	570	630	620	540	410	240	50	0	0	0	0	0		
	S	160			0	0	50	200	350	470	550	580	550	470	350	200	50	0	0		
	SW	155			0	0	0	0	0	S0	240	410	540	620	630	570	430	230	30		
	W ${ }_{\text {W }}$	115			0	0	0	0	0	0	0	0	215	400	540	605	555	370	65		
	NW	45			0	0	0	0	0	0	-	0	0	0	135	285	355	295	60		
	H	205			0	65	185	320	445	540	600	620	600	540	445	320	185	65	0		
Diff (Cldy) Diff (Clr)		$\begin{aligned} & 85 \\ & 40 \end{aligned}$			5 5	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 95 \\ & 60 \end{aligned}$	$\begin{array}{r} 135 \\ 70 \end{array}$	$\begin{array}{r} 175 \\ 80 \end{array}$	$\begin{array}{r} 205 \\ 85 \end{array}$	$\begin{array}{r} 230 \\ 90 \end{array}$	$\begin{array}{r} 235 \\ 90 \end{array}$	$\begin{array}{r} 230 \\ 90 \end{array}$	$\begin{array}{r} 205 \\ 85 \end{array}$	$\begin{array}{r} 175 \\ 80 \end{array}$	$\begin{array}{r} 135 \\ 70 \end{array}$	$\begin{aligned} & 95 \\ & 60 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		

PV power output

A simple model: $\quad P_{m p}=P_{S T C} \frac{J_{\text {tot }}}{1000}(1-\beta[T-25]) \times p$

Example 1

Calculate the power output from a PV panel at $60^{\circ} \mathrm{C}$ with $840 \mathrm{~W} / \mathrm{m}^{2}$ incident solar radiation if the same panel produces 150 W at $\mathrm{STC}\left(1000 \mathrm{~W} / \mathrm{m}^{2} \& 25^{\circ} \mathrm{C}\right) . \beta$ is measured at $0.003 \mathrm{~W} / \mathrm{K}$

Example 1

For the same situation calculate the power output if the temperature was $30^{\circ} \mathrm{C} . \beta$ is again measured at $0.003 \mathrm{~W} / \mathrm{K}$

$$
\begin{aligned}
& P=P_{\text {STC }} \frac{I_{\text {tot }}}{1000}[1-\beta(T-25)] \\
& P=150 \times \frac{840}{1000}[1-0.003(30-25)] \\
& =124.1 \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
& P=P_{S T C} \frac{\boldsymbol{J}_{\text {tot }}}{1000}[1-\beta(T-25)] \\
& P=150 \times \frac{840}{1000}[1-0.003(60-25)] \\
& =112.8 \mathrm{~W}
\end{aligned}
$$

Calculating equation coefficients

Construction Conservation Equation
$\left(2 \rho_{\mathrm{I}}(\mathrm{t}+\delta \mathrm{t}) \mathrm{C}_{\mathrm{I}}(\mathrm{t}+\delta \mathrm{t})+\frac{2 \delta \mathrm{t} \mathrm{k}(\mathrm{t}+\delta \mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}}\right) \theta(\mathrm{I}, \mathrm{t}+\delta \mathrm{t})$
$-\frac{\delta \mathrm{t} \mathrm{k}(\mathrm{t}+\delta \mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}} \theta(\mathrm{I}-1, \mathrm{t}+\delta \mathrm{t})-\frac{\delta \mathrm{tk}(\mathrm{t}+\delta \mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}} \theta(\mathrm{I}+1, \mathrm{t}+\delta \mathrm{t})-\frac{\delta \mathrm{t} \mathrm{I}_{\mathrm{I}}(\mathrm{t}+\delta \mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}} \delta \mathrm{x}_{\mathrm{J}} \delta \mathrm{x}_{\mathrm{K}}}$
$=\left(2 \rho_{\mathrm{I}}(\mathrm{t}) \mathrm{C}_{\mathrm{I}}(\mathrm{t})-\frac{2 \delta \mathrm{t} \mathrm{k}(\mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}}\right) \theta(\mathrm{I}, \mathrm{t})$
$+\frac{\delta \mathrm{t} \mathrm{k}(\mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}} \theta(\mathrm{I}-1, \mathrm{t})+\frac{\delta \mathrm{tk}(\mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}}^{2}} \theta(\mathrm{I}+1, \mathrm{t})+\frac{\delta \mathrm{t} \mathrm{I}_{\mathrm{I}}(\mathrm{t})}{\delta \mathrm{x}_{\mathrm{I}} \delta \mathrm{x}_{\mathrm{J}} \delta \mathrm{x}_{\mathrm{K}}}$.

Surface Conservation Equation

Fluid Conservation Equation

Internal long-wave radiation - calculation

Figure 7.18: Four grey surfaces bounding an enclosure.

$$
\begin{array}{ll}
\mathrm{q}_{1}=\varepsilon_{1} \sigma \mathrm{~A}_{1} \theta_{1}^{4} & \mathrm{q}_{2}=\varepsilon_{2} \sigma \mathrm{~A}_{2} \theta_{2}^{4} \\
\mathrm{q}_{3}=\varepsilon_{3} \sigma \mathrm{~A}_{3} \theta_{3}^{4} & \mathrm{q}_{4}=\varepsilon_{4} \sigma \mathrm{~A}_{4} \theta_{4}^{4}
\end{array}
$$

$\mathrm{a}_{1}^{\prime}=$		$+\mathrm{q}_{2} \mathrm{f}_{2 \rightarrow 1} \varepsilon_{1}$	$+\mathrm{q}_{3} \mathrm{f}_{3 \rightarrow 1} \varepsilon_{1}$	$+\mathrm{q}_{4} \mathrm{f}_{4 \rightarrow 1} \varepsilon_{1}$
$\mathrm{a}_{2}=$	$+\mathrm{q}_{1} \mathrm{f}_{1 \rightarrow 2} \varepsilon_{2}$			$+\mathrm{q}_{3} \mathrm{f}_{3 \rightarrow 2} \varepsilon_{2}$
$\mathrm{a}_{3}^{\prime}=$	$+\mathrm{q}_{1} \mathrm{f}_{4 \rightarrow 2} \mathrm{f}_{4 \rightarrow 2} \varepsilon_{2}$			
$\mathrm{a}_{4}=$	$+\mathrm{q}_{1} \mathrm{f}_{1 \rightarrow 4} \varepsilon_{4}$	$+\mathrm{q}_{2} \mathrm{f}_{2 \rightarrow 3} \varepsilon_{3}$		$+\mathrm{q}_{2} \mathrm{f}_{2 \rightarrow 4} \varepsilon_{4}$
a_{4}	$+\mathrm{q}_{3} \mathrm{f}_{3 \rightarrow 4} \varepsilon_{4}$		$+\mathrm{q}_{4} \mathrm{f}_{4 \rightarrow 3} \varepsilon_{3}$	

$$
r_{i}^{\prime}=a_{i}^{\prime}\left(1-\varepsilon_{i}\right) / \varepsilon_{i} ; i=1,2,3,4
$$

$\mathrm{a}_{1}^{\prime \prime}$	a_{1}^{\prime}		$+\mathrm{r}_{2}^{\prime} \mathrm{f}_{2 \rightarrow 1} \varepsilon_{1}$	$+\mathrm{r}_{3} \mathrm{f}_{3 \rightarrow 1} \varepsilon_{1}$	$+\mathrm{r}_{4}^{\prime} \mathrm{f}_{4 \rightarrow 1} \varepsilon_{1}$
$\mathrm{a}_{2}^{\prime \prime}=$	a_{2}	$+\mathrm{r}_{1}^{\prime} \mathrm{f}_{1 \rightarrow 2} \varepsilon_{2}$		$+\mathrm{r}_{3} \mathrm{f}_{3 \rightarrow 2} \varepsilon_{2}$	$+\mathrm{r}_{4}^{\prime} \mathrm{f}_{4 \rightarrow 2} \varepsilon_{2}$
$\mathrm{a}_{3}=$	a_{3}	$+\mathrm{r}_{1} \mathrm{f}_{1 \rightarrow 3} \varepsilon_{3}$	$+\mathrm{r}_{2} \mathrm{f}_{2 \rightarrow 3} \varepsilon_{3}$		$+\mathrm{r}_{4} \mathrm{f}_{4 \rightarrow 3} \varepsilon_{3}$
$\mathrm{a}_{4}=$	a_{4}	$+\mathrm{r}_{1} \mathrm{f}_{1 \rightarrow 4} \varepsilon_{4}$	$+\mathrm{r}_{2} \mathrm{f}_{2 \rightarrow 4} \varepsilon_{4}$	$+\mathrm{r}_{3} \mathrm{f}_{3 \rightarrow 4} \varepsilon_{4}$	

$$
\begin{array}{ll}
r_{1}^{\prime \prime}=\left(a_{1}^{\prime \prime}-a_{1}^{\prime}\right)\left(1-\varepsilon_{1}\right) / \varepsilon_{1} & r_{2}^{\prime \prime}=\left(a_{2}^{\prime \prime}-a_{2}^{\prime}\right)\left(1-\varepsilon_{2}\right) / \varepsilon_{2} \\
r_{3}^{\prime \prime}=\left(a_{3}^{\prime \prime}-a_{3}^{\prime}\right)\left(1-\varepsilon_{3}\right) / \varepsilon_{3} & r_{4}^{\prime \prime}=\left(a_{4}^{\prime \prime}-a_{4}^{\prime}\right)\left(1-\varepsilon_{4}\right) / \varepsilon_{4}
\end{array}
$$

$$
\left.\left.\begin{array}{c}
a_{i}^{n}=a_{i}^{n-1}+\sum_{j=1}^{N} r_{j}^{n-1} f_{j \rightarrow i} \varepsilon_{i} \\
r_{i}^{n}=\left(a_{i}^{n}-a_{i}^{n-1}\right)\left(1-\varepsilon_{i}\right) / \varepsilon_{i}
\end{array}\right\} \begin{array}{c}
1 \leq n \leq \infty \\
a_{i}^{0}=0 \\
r_{i}^{0}=q_{i} \\
f_{i} \rightarrow i=0
\end{array}\right\}
$$

Internal long-wave radition

$$
\begin{array}{|l|l}
Q_{e}=\varepsilon \sigma \mathrm{A} \theta^{4} & Q_{1 \rightarrow 2}=h_{r} \mathrm{~A} \Delta \theta \\
\hline
\end{array}
$$

Table 7.13: Application of the recursive techniques to the problem of figure 7.17

Table 7.14: Application of the recursive techniques to low emissivity surfaces

Internal long-wave radiation - numerical method

\square Surfaces divided into finite elements and a unit hemisphere superimposed on each element.
\square Unit hemisphere's surface divided into patches representing the radiosity field of the
 associated finite element.
\square 'Energy rays' are formed by connecting the centre point of the finite element and all surface patches.
\square Each ray is projected to determine an intersection with another surface.

\square At this intersection a surface response model is invoked to determine the energy absorption and the number and intensity of exit rays these are continually added to the stack of rays queued for processing.Ray processing is discontinued when the inherent energy level falls below a threshold.
\square The energy absorptions for each finite element are then summated as appropriate to give the final net longwave radiation exchanges for the enclosure.

External long-wave radiation

$$
\mathrm{q}=\mathrm{A}_{\mathrm{s}} \varepsilon \sigma\left(\theta_{\mathrm{e}}^{4}-\theta_{\mathrm{s}}^{4}\right)
$$

$$
\theta_{\mathrm{e}}^{4}=\mathrm{f}_{\mathrm{s}} \theta_{\mathrm{sky}}^{4}+\mathrm{f}_{\mathrm{g}} \theta_{\mathrm{grd}}^{4}+\mathrm{f}_{\mathrm{u}} \theta_{\text {sur }}^{4}
$$

Table 7.15: Representative values of sky, ground and obstructions view factors.						
Location	f_{s}	f_{g}	f_{u}			
City centre: surrounding buildings at same height, vertical surface	0.36	0.36	0.28			
City centre: surrounding buildings higher, vertical surface	0.15	0.33	0.52			
Urban site: vertical surface	0.41	0.41	0.18			
Rural site: vertical surface	0.45	0.45	0.10			
City centre: sloping roof	0.50	0.20	0.30			
Urban site: sloping roof	0.50	0.30	0.20			
Rural site: isolated	0.50	0.50	0.00			

