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Numerical method: systems
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Equipment performance: dynamic and non-linear
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Variation of Overall Thermal Efficiency with Heat to Power Ratio for a series of
Gas Turbine Thermal Efficiencies
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Issues: dynamic response, conditions monitoring, hybrid systems design and control.




Plant and systems simulation
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Two approaches:

O Sequential, where components are replaced by an equivalent input/output relationship
so that the output from one component becomes the input to the next. Iteration 1s then
employed to achieve solution convergence throughout the network.

Simultaneous, where plant components are represented by finite volumes and
corresponding conservation equations added to the whole system matrix equation.




Sequential vs. simultaneous: pros and cons

[ Sequential approach using black-box, input-output models:
supports system design (sizing components);
allows checking that components will work together;

supports testing of system control strategies;

problems with inter-component dependencies;
fixed parameters not valid in off-design conditions.

O Simultaneous approach using full numerical discretisation

components have a description of the fundamental processes in each component;
can be used to optimise the internal design of each component;

does not rely on ‘design-condition’ parameters;

can be used to study control variables within components and globally;

requires detailed information (e.g. geometry, material properties) that is not
always available from manufacturers.




Example system: ground and air source heat pump

A, B, C: Evaporation and sensible heating of REAT, PIBREERATRSS 5
B

refrigerant in the evaporator (heat transfer from OUTDOOR
COILS
the colder source):
= convection from source fluid to heat g
exchanger surface; W,ANSKD
= conduction through heat exchanger wall; o |

= convection to boiling refrigerant.
/INDOOR

‘/ ' ' ~—" colLS

D: Electrical energy converted into potential ¢ 44
energy (pressure) and heat (temperature increase) SRR TGN
in compressor.

E, F, G: Condensation and sensible cooling of
refrigerant in the condenser (heat transfer to Supply _

hotter sink): P Heatpump

= convection from condensing refrigerant; | i

= conduction through heat exchanger wall;

= convection from heat exchanger surface to | omion

supply air. 0 cevic

]
1 Return air
1

Ground fluid loop i

]
E Compressor (to borehole) i* _____________
1

H: Pressure drop and cooling across expansion
5 Reversing /
Valve' % o Borehole(s)




Heat pump: sequential approach

Parameters

or a simple model, Ei.g. a _ I
. . — 3
wind turbine: P % 2 PACY Inputs { —»| Component model p=—> } Outputs

\ — —

\

Manufacturer data (performance map)
Fluid properties (constant)

Leaving water

Entering water temperature

temperature & flow
Leaving air
temperature &
humidity

Entering air
temperature,
humidity & flow

, Electrical power
On/off signal

Heat flows




Heat pump: simultaneous approach
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Variable discretisation levels
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Figure 6.11: Wet central heating system energy balance matrix equation.
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Building-integrated photovoltaic system
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ESP-r: linked building, plant and air/water flow network
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Hydrogen fuel cells
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Renewable energy
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1 @ 2000 MW
100@ 20 MW
4000 @ 0.5MW
40,000 @  0.05 MW
200,000@  0.01 MW

RE systems 3-5 times greater if the requirement
is to match energy production. Requires a
combined buildings/systems model.
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Embedded generation, Lighthouse Building in Glasgow

Demand reduction through transparent
insulation, advanced glazing and
smart control.

PV: 0.7 kW,
DWT: 0.6 kW,

PV hybrid: 0.8 kW, / 1.5 kW,

Kosdeaduiininnnnl  total demand:
: 68 kWh/m?.yr

total RE supply:
98 kWh/m?.yr
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Issues:

O accommodating the grade, variability and unpredictability of energy sources/demands;

O hybrid systems sizing and maintenance;

O strategies for co-operative control of stochastic demand and supply;

O active network management for network balancing, fault handling and power quality maintenance.
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Tidal stream energy

Marine
Current
Turbines’
300kW
prototype

1l axis turbines evolved from wind

Challenges:

O aquaculture impact

O reduced reactive torque

QO simplify moorings

U limit corrosion and abrasion

0 maintenance and safety issues

O power take-off at low rotation speed
O gearing reduction/elimination

O power transmission/grid access

U land access and use

O phased operation of different sites
20




Aﬂi{ro'qli is universallV'applicablE
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