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Target domains

Discretised system

The rate of increase of ¢ within a fluid element = the rate of increase of ¢
due to diffusion - the net rate of flow of ¢ out of the element + the rate of
increase of ¢ due to sources.

electricity ~ contaminants Whole system

; 7 conservation statement
_ formulated and solved at
conduction . = > successive time steps at an

, wH o appropriate $patial
5 heat : x I Y . | resolution.

convection <« [ERESTER
properties

advection <—~ & state ™ control
variables

shortwave / \

radiation / momentum
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= other?
radiation Mass

It is hubristic to suggest that the future can be predicted, only emulated to ensure resilience.




High resolution commercial building models

Renewable energy
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PDE approximation
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Application issues

U Complications to differencing by Taylor series expansion:
= simultaneous presence of multiple heat transfer processes;
= time and positional dependency of heat generation due to solar radiation,
mechanical plant etc.;
= discretisation leading to non-homogeneous, anisotropic finite volumes;
= presence of multi-dimensional effects.

U Alternative approach: directly apply conservation principles to small control
volumes.

conduction
convection
3: radiation

mass exchange

Figure 2.15: Heat exchanges in a physical system.




Control volume method — heat balance

Heat flux:
in the limit

Heat storage:

1(E)CIE)EVI(E) . =
“'a—l [Hll.l+0l)—6(l.lh]=ZKj_ll‘HJ—H,j + q

Energy balance:

L ey O N Qs(t + 30
Ci(t+ ot)a(I, t+ ot) — 2, C.(t+ t)9(1,t + ot) — ——
' =1 OV

General form:
N at qp(t)

=C, (eIt + > Cu(ho(i, ) + ——— + &
‘ i=1 oV

Note:
U equation can be applied to building and plant components;
U number of coefficients will vary;
U analogous considerations for mass and momentum balance.




Formulating a numerical model

U Continuous system made discrete by the
placement of nodes at points of interest:

viewpount

lateral conduction
connection

2 P o internal air node
Figure 3.11: Nodal scheme for flud flow in ducts and pipes

0 For each node, and in terms of all surrounding nodes representing regions deemed
to be in thermodynamic contact, conservation equations are developed:

U The entire equation-set is solved simultaneously for successive time steps:




Modelling issues

[ Not possible to prescribe a spatial discretisation scheme in advance —
depending on the problem, model parts may require high resolution (many
nodes) or low resolution (few nodes).

U Discretised conservation equations will have a variable number of coefficients
depending on the node type. This will require a carefully designed matrix
coefficient indexing scheme to facilitate efficient equation solution.

[ Because different system parts will have different time constants and coupling
strengths, equation processing must be structured to allow these effects to be
reconciled whilst not enforcing a lowest common denominator processing
frequency.

O Since different domain equations possess different characteristics (e.g. some
are highly non-linear — an approach that depends on several co-operating
solvers will be more computationally efficient than an approach that attempts
to coerce the disparate equation-sets into a single solver type.




Numerical errors

Two sources of error associated with finite
differencing schemes:

U Rounding - where computations include an
insufficient number of significant figures. Can
be minimised by careful design of the numerical
scheme and by operating in double precision.

Temperature (°C)
)

Time (hours)

Figure 3.1: Effect of space discretisation

U Discretisation - resulting from the replacement

of derivatives by finite differences. Error
minimised by reducing space and time
increments.
= not possible to prescribe space and time
increments because they depend on modelling
objectives;
implicit formulation attractive because it is
unconditionally stable;
discretisation depends on factors such as
surface insolation, local convection, corner
effects/thermal bridges, and the shape of the
capacity/insulation system.
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Figure 32: E e discretisation
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S ! Stem discretis ation lateral conduction

connection
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U By prescription: e.g. at least 3 nodes per -
homogeneous element with a time step W U radiation
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effects—a combined one- and two-dimensional scheme. (b) Surface temperature

gradient—a two-dimensional scheme.

U Mixed node schemes often required.
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Material energy conservation equation
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Material node types:
U opaque intra-construction;
U transparent intra-construction;
[ phase change;
U boundary between elements;
O [umped.
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Surface node types:
[ room surfaces;
U plant component surfaces;
Q ground.

Figure 3.9: Surface energy balance nodal scheme.




Fluid energy conservation equation
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Surface node types:
O room air;
O construction air gaps;
O plant component fluids.

\

3

(a)

Figure 3.10: Fluid volume energy balance nodal scheme. (a) Fluid
volume contained by real surfaces: convective heat transfer. (b) Fhud
volumes contained by fictitious surfaces: advective heat transfer

Figure 3.11: Nodal scheme for fluid flow in ducts and pipes.
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Zone 1: nodal network as
figure 3.12 but with 5
bounding surfaces.

Zone 2: nodal network as
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Construction Conservation Equation
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Figure 6.15: Elements of a control loop.

nodal cond_iuou;—T

future time-row coefficients matrix A vector 6(t+51) BO(+C
velCio o \Y

Figure 6.8: Active solar system enefzy balance matrix equation

Table 6.8: Examples of control loop elements.

Sensed/actuated parameters  Regulation law Sensed/actuated parameters  Regulation law

time of day/year ideal CO; level duty cycling
climate PID combinations ventilation rate load shedding
various temperatures optimum start/stop room air velocity adaptive

glare and illuminance weather compensation | hygro-thermal properties fuzzy logic
luminaire status cascade humidity neural network

occupancy enthalpy cycle

Table 6.9: Some examples of simulation-assisted control.

Control focus Optimised parameter Control focus Optimised parameter

HVAC operation start/stop time district heating match to load
night cooling hours of operation under-floor heating period of operation
night set-back set-back temperature mixed ventilation avold overheating
boiler sequencing heating system eff. ice store charging hours of operation
load shedding energy consumption ground heat pump thermal storage
CHP hours of operation




Equation-set solution

O Equations are linked => simultaneous solution required.

O Equation-set is sparse and populated by clusters of equations relating to
components with different time constants => special solver required to
minimise the computational effort.

O Partitioning techniques often used allowing different clusters to be processed
at different frequencies depending on the related time constant.

U This allows control decisions to be made, and problem parameters
recomputed, more frequently for an item of plant requiring a computational
time-step of, say, 1 minute, than for a heavyweight construction requiring,
say, 60 minutes.

O Two main equation solving approaches: iterative and direct.




Equation-set extension
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-13: The future time-row coefficients matrix (A) of the single zone
matrix equation A&, = B&, + C.

Equation coefficients can be extended to improve the modelling resolution in relation to:
= short-wave and long-wave radiation;
= air movement;
= casual gains;
surface convection;
variation in fundamental parameters.
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Technlque can be-similarly apphed t0
all engrgy systems.
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