
Numerical method: demand side
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Discretised system

Whole system 
conservation statement 
formulated and solved at 
successive time steps at an 
appropriate spatial 
resolution.

It is hubristic to suggest that the future can be predicted, only emulated to ensure resilience.

The rate of increase of φ within a fluid element = the rate of increase of φ 
due to diffusion - the net rate of flow of φ out of the element + the rate of 

increase of φ due to sources.
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High resolution commercial building models

Lighting systems

Electrical network

HVAC systems
Control systems

Occupants

Form & content

Renewable energy



Add eqns:

Subtract eqns:

Truncate eqn 1:

Truncate eqn 2:

Taylor series expansion:

Central difference approximations

First forward difference approx.

First backward difference approx.

PDE approximation

5



Fourier conduction eqn.

Explicit formulation 
(central and first forward)

Implicit formulation (central 
and first backward)

Weighted average scheme
W < 0.5 explicit
W >= 0.5 implicit
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 Complications to differencing by Taylor series expansion:
 simultaneous presence of multiple heat transfer processes;
 time and positional dependency of heat generation due to solar radiation, 

mechanical plant etc.;
 discretisation leading to non-homogeneous, anisotropic finite volumes;
 presence of multi-dimensional effects.

 Alternative approach: directly apply conservation principles to small control 
volumes.

Application issues
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Control volume method – heat balance

Note:
 equation can be applied to building and plant components;
 number of coefficients will vary;
 analogous considerations for mass and momentum balance.

Heat flux:

Heat storage:

Energy balance:

General form:

in the limit

Always the same!
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 Continuous system made discrete by the 
placement of nodes at points of interest:
 nodes represent homogeneous or non-

homogeneous physical volumes 
(comprising fluids, opaque and 
transparent surfaces, constructional 
elements, plant component parts, room 
contents etc.).

 For each node, and in terms of all surrounding nodes representing regions deemed 
to be in thermodynamic contact, conservation equations are developed:
 represents the nodal condition and the inter-nodal transfers of energy, mass and 

momentum.

 The entire equation-set is solved simultaneously for successive time steps:
 gives the future time-row nodal state variables as a function of present time-

row states and prevailing boundary conditions at both time-rows.

Formulating a numerical model
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Modelling issues

 Not possible to prescribe a spatial discretisation scheme in advance ─
depending on the problem, model parts may require  high resolution (many 
nodes) or low resolution (few nodes).

 Discretised conservation equations will have a variable number of coefficients 
depending on the node type. This will require a carefully designed matrix 
coefficient indexing scheme to facilitate efficient equation solution.

 Because different system parts will have different time constants and coupling 
strengths, equation processing must be structured to allow these effects to be 
reconciled whilst not enforcing a lowest common denominator processing 
frequency.

 Since different domain equations possess different characteristics (e.g. some 
are highly non-linear ─ an approach that depends on several co-operating 
solvers will be more computationally efficient than an approach that attempts 
to coerce the disparate equation-sets into a single solver type.
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Numerical errors

Two sources of error associated with finite 
differencing schemes:

 Rounding - where computations include an 
insufficient number of significant figures. Can 
be minimised by careful design of the numerical 
scheme and by operating in double precision.

 Discretisation - resulting from the replacement 
of derivatives by finite differences. Error 
minimised by reducing space and time 
increments.
 not possible to prescribe space and time 

increments because they depend on modelling 
objectives; 

 implicit formulation attractive because it is 
unconditionally stable;

 discretisation depends on factors such as 
surface insolation, local convection, corner 
effects/thermal bridges, and the shape of the 
capacity/insulation system.
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System discretisation

 By prescription: e.g. at least 3 nodes per 
homogeneous element with a time step 
less than 1 hour.

 Using thermal criteria:
 Biot Number << 1 use lumped 

parameter;
 else, equal thermal capacity 

divisions using the dwell time.

 Mixed node schemes often required.
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Material energy conservation equation

Material node types:
 opaque intra-construction;
 transparent intra-construction;
 phase change;
 boundary between elements;
 lumped.
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Surface energy conservation equation

Surface node types:
 room surfaces;
 plant component surfaces;
 ground.
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Fluid energy conservation equation

Surface node types:
 room air;
 construction air gaps;
 plant component fluids.
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Equation structuring – building zone + contents + radiator

outputs support: energy and comfort, impact of 
infiltration & ventilation, short- & longwave 

radiation, casual gains etc. 16



Equation structuring - passive/active solar system
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Equation structuring - central heating system

Outputs support: energy and comfort; building/plant zoning 
strategies; control, system efficiency, distribution losses etc.
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Calculating equation coefficients

Fluid Conservation Equation

Surface Conservation Equation

needs flow estimation

needs radiation and 
convection estimation

Construction Conservation Equation
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Imposing control
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Equation-set solution

 Equations are linked => simultaneous solution required.

 Equation-set is sparse and populated by clusters of equations relating to 
components with different time constants => special solver required to 
minimise the computational effort.

 Partitioning techniques often used allowing different clusters to be processed 
at different frequencies depending on the related time constant.

 This allows control decisions to be made, and problem parameters 
recomputed, more frequently for an item of plant requiring a computational 
time-step of, say, 1 minute, than for a heavyweight construction requiring, 
say, 60 minutes.

 Two main equation solving approaches: iterative and direct.

21



Equation-set extension

Equation coefficients can be extended to improve the modelling resolution in relation to:
 short-wave and long-wave radiation;
 air movement;
 casual gains;
 surface convection;
 variation in fundamental parameters.
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Technique can be similarly applied to 
all energy systems.
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