
ME404 Response function method 
 
There are essentially two methods that can be employed to represent the dynamic interactions 
that occur within an energy system: response function and numerical. Each method provides a 
solution to the differential equations that govern the flow of heat in solids, heat transfer at 
surface layers and heat exchange between connected fluid volumes. The response function 
approach is usually applied to differential problems of low order with time-invariant 
parameters whereas the numerical method is also suited to time varying problems of high 
order. This handout describes the response function method. 
 
The response function method is often used to estimate the internal air temperature prevailing 
in an unconditioned building or the heating/cooling requirements to maintain a specified 
temperature. A detailed consideration of the method is outwith the scope of this course; what 
follows is a high level description. 
 
Essentially, the method provides an analytical solution to the partial differential equations 
representing an energy system via a Laplace transformation as follows. 

1. The given equations in the time domain, f(t), are transformed to a subsidiary equation 
in an imaginary space, f(p). 

2. The subsidiary equations are solved by purely algebraic manipulations. 
3. An inverse transformation is applied to the solution to obtain the solution in the time 

domain of the initial problem. 
 
The interesting feature of the method is that in many cases ordinary differential equations are 
transformed into purely algebraic equations and partial differential equations are transformed 
to ordinary differential equations – thus facilitating an analytical solution. Transforms and 
inverse transforms can sometimes be obtained from Laplace transform tables such as shown 
in table 1; otherwise they are evaluated mathematically.   
 

Table 1: Some common Laplace transform pairs. 
 f(t) f(p) 
Unit impulse δ(t) 1 
Unit step H(t) 1/p 
Unit ramp t 1/p2 
 tn n!/pn+1; n +ve integer 
Delayed unit impulse δ(t-Δ) e-pΔ 
Delayed unit step H(t-Δ) e-pΔ/p 
 e-at 1/(p+a) 
 e-a(t-Δ ) H(t-Δ) e-pΔ/(p+a) 
 te-at 1/(p+a)2 
 tne-at n!/(p+a)n+1 
 sin bt b/(p2+b2) 
 cos bt p/(p2+b2) 

 
A Laplace transformation may be undertaken in the time or frequency domain: the former 
concerned with the response of a system to time-varying boundary temperatures or fluxes; the 
latter with the response to periodic excitations of differing frequencies. Because the frequency 
domain approach in its simplest form is amenable to manual application it is considered 
further here. In the UK, this approach is known as the Admittance method. 
 
The Admittance method 
 
The fundamental assumption underlying the response function method in the frequency 
domain is that weather time-series can be represented by a series of periodic cycles.  In this 
way the weather's influence is represented by a steady-state term accompanied by a number of 



sine wave harmonics with, in general, increasing frequency and reducing amplitude.  This 
division of weather time-series into component sinusoidal variations about a mean condition 
may be achieved via a Fourier series representation. Each harmonic can then be processed 
separately and modified by thermal response factors as determined in advance from the 
application of the Laplace transform method to representative cases. The overall system 
response is then obtained by summing the individual effects of the separate harmonics with 
respect to the mean condition. For convenience, the frequency of the fundamental harmonic is 
often set at 24 hours with the remaining harmonics having diminishing periods such as 
12, 6, 3, 1.5 hours etc.  
 
The Admittance method corresponds to the case where only the mean condition and the 24 
hour harmonic are employed. Three principal response factors are then used: decrement 
response, surface response and admittance response, each possessing a corresponding phase 
angle that determines the response time of the process the factor addresses. 
 
The decrement response factor is defined as the ratio of the cyclic flux transmission to the 
steady state flux transmission and is applied to fluctuations (about the mean) in external 
temperature or flux impinging on exposed constructions.  This gives the related fluctuation 
within the building at some later point in time depending on the decrement factor time lag.  
Figure 1 shows a wall exposed to a sinusoidal external air temperature or solar radiation time-
series.  The corresponding cyclic heat flux at the inside surface (x=0) is also shown after time-
series modification by the decrement factor of the intermediate elements and application of 
the appropriate time shift. 
 
The surface response factor defines the portion of the heat flux at an internal surface which is 
re-admitted to the internal environmental point when temperatures are held constant.  The 
factor is applied to cyclic energy inputs at an internal surface to give the corresponding cyclic 
energy variations at the environmental point; the concept is analogous to time-shifted 
reflections as illustrated in figure 2.  Typical applications include the modification of the 
transmitted component of solar radiation through windows and the radiant component of 
casual gains both of which strike internal surfaces. 
 

  

Figure 1: Decrement factor and time lag. Figure 2: Surface factor and time lag. 
 
The admittance response factor is defined as the amount of energy entering a surface for each 
degree of temperature swing at the environmental point.  It is used to represent enclosure 
response and give the equivalent swing in temperature about the mean value due to a cyclic 
heat load on the enclosure. 
 
By adding the cyclic contribution from the 24 hour harmonic to the mean condition, 
performance predictions of internal temperature, heating/cooling requirements and the effects 
of variable ventilation and intermittent plant operation may be made. The procedure for 
internal temperature estimation at some point in time is as follows. 
 
First, the mean internal environmental temperature is determined i from 
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where θ’
ei is the daily mean internal environmental temperature (°C), θ’

ao the mean external air 
temperature (°C), Q’

t the mean total heat flux from all sources (W), C’
v the mean ventilation 

conductance (W/°C), ΣAiUi the sum of the product of areas and overall thermal transmittance 
values (W/°C) and c is the number of constructions. 
 
The mean total heat flux is given by 

csfst QQQQ '''' ++=  
where Q’

fs is the mean solar gain through opaque surfaces, Q’
s the mean solar gain through 

transparent surfaces, and Q’
c the mean gain from casual sources (all measured in W).  These 

terms are now considered in turn. 
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where N is the total number of exposed opaque surfaces, αi the surface shortwave 
absorptivity, εiIoi the longwave radiation exchange with the surroundings (W/m2), Roi the 
combined surface resistance (m2°C/W) and I’soi the mean solar flux incident on the opaque 
surface: 
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where m=24 for the daily mean and Isoi(t) the instantaneous solar flux impinging on opaque 
surface i (W/2). 
 
The mean solar gain through transparent surfaces is found from 
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To determine the portion of the incident solar flux that penetrates windows, predetermined 
solar gain factors are employed: 
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where L is the total number of transparent surfaces and Si(t) the solar gain factor at time t. 
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where K is the number of casual sources and Qcj the magnitude of any source (W). 
 
Second, the contribution of the 24 hour harmonic to the swing in internal environmental 
temperature about the mean value is then computed from 
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where θ’’
ei(t) is the fluctuation in internal environmental temperature about the mean at time t 

(°C), Q’’
t(t-Φa) the total fluctuating gain at the environmental point at time t-Φa (W); Φa the 

time lag associated with the admittance factor (s), and ΣA.a the sum of the produce of area 
and admittance for all internal surfaces (W/°C). 
 
The total fluctuating gain at the environmental point is given by 

)()()()()()()( '''''''''''''' tvQtgcQtfcQtQtQtQtQ csfst +++++=  
where Q’’

fs(t) is the opaque surface solar gain fluctuation at time t, Q’’
s(t) the transparent 

surface solar gain fluctuation, Q’’
c(t)$ the casual gain fluctuation, Q’’

fc(t) the opaque surface 



conduction gain fluctuation, Q’’
gc(t) the transparent surface conduction gain fluctuation, and  

Q’’
v(t) the ventilation or infiltration fluctuation (all measured in W).  Each load fluctuation is 

now considered in turn. 
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where di is the decrement factor for the layers behind surface i, Φd the associated time lag, 
I’’

so(t-Φd) the fluctuation about the mean of the solar intensity incident on opaque surfaces at 
some time (t- Φd), measured in W/m2 and equal to Iso(t-Φd) – I’

so. 
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where Q’’
s1(t- Φs) is the fluctuation due to the directly transmitted (time lagged) component of 

solar radiation through transparent surfaces and Q’’
s2(t) the fluctuation due to the absorbed 

component of the incident solar radiation which is retransmitted (with no time lag) inward to 
the environmental point, both measured in W. The admittance method uses alternating solar 
gain factors to determine the fluctuation in energy at the environmental point due to the 
fluctuation in solar gain through transparent surfaces: 
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where S’’
i(t-Φs) is the alternating solar gain factor which includes the effect of the surface 

response factor. 
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where Q’’

c(t) is the total instantaneous casual load (W). 
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where θao(t) is the fluctuation in outside air temperature (°C) and o the number of opaque 
constructions. 
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where T is the number of transparent constructions.  It is usual practice to assume that 
window conduction processes undergo negligible time delay. 
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where, again, it is usual to assume a zero time lag. 
 
Third, final peak temperature is obtained as the summation of the mean and fluctuating 
temperatures. 
 
Admittance method: worked example 
 
Using the data sources given in the Appendix, this section demonstrates the use of the 
Admittance method as described above to estimate the internal environmental temperature 
likely to occur at 15h00 during a warm, sunny day in August in a south facing office as 
described by the following data. 

Latitude: 51.7°N. 
Internal dimensions: 6m x 5m x 3m high. 
External wall: 5m x 3m, dark external finish. 
Window: 3m x 2m, not shaded, open during day, closed at night. 
Occupancy: 5 persons for 8 hours at 85W per person. 



Lighting: 25 W/m2 of floor area, ON 08h00-18h00. 
Construction details: 

Element U-Value 
(W/m2.K) 

Admittance 
(W/m2.K) 

Decrement 
(-) 

Time Lag 
(h) 

External wall: 
220mm brickwork, 
25mm cavity, 
25mm insulation, 
10mm plasterboard 

0.59 0.91 0.3 8 

Window: 
double glazed, 
12mm air gap, 
normal exposure 
(ignore frame) 

2.9 2.9   

Internal walls: 
220mm brickwork, 
13mm light plaster 

1.9 3.6   

Floor: 
25mm wood block, 
50mm screed, 
150mm cast concrete 

1.5 2.9   

Ceiling: 
as floor but reversed 

1.5 6.0   

     
Mean solar heat gain 
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where Ag is the sunlit area of glazing, I'

t the mean total solar irradiance (from Table A8.1 in 
Appendix) and S' the mean solar gain factor (see Table A8.2). 
 
Mean casual gain 
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where gc1, gc2 etc. are the instantaneous casual gains and t1, t2, etc. the durations of gc1, gc2, …. 
 
Total mean heat gain 

WQ t 1126454672' =+=  
 
Mean internal environmental temperature 
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where g and f refer to glazed and opaque surfaces respectively and Cv is the ventilation 
conductance evaluated from: 
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where N is the ventilation rate (hr-1), V the room volume (90 m3) and ΣA the total internal 
surface area (120 m2).  From Table A8.4, N = 3 and so Cv =78.3 W/K. 
 
From Table A8.3, the mean outside air temperature, θ'

ao, is 16.5°C and the mean sol-air 
temperature, θ'eo, is 23°C; therefore: 
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And therefore the mean internal environmental temperature is 

Cei °= 28'θ  
 
Swing in effective solar heat gain 
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where Sa is the alternating solar gain factor (Table A8.6) and Ip the peak intensity of solar 
radiation which here is 490 W/m2 (i.e. the value at 14h00 allowing for a 1 hour time lag). 
 
Structural gain 
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where f is the decrement factor, θeo the sol-air temperature at time of peak less time lag (i.e. 
at 15h00 – 8 = 07h00 = 15.5°C) and θ'

eo the mean sol-air temperature (= 23°C). 
 
Casual gain 
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where Qc is the casual gain value at the peak hour (= gc1 + gc2 + ...). 
 
Swing in gain, air-to-air 
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where θ ao is the swing in outside air temperature (from Table A8.3 = 21.5-16.5 = 5°C). 
 
Total swing 
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Swing in internal environmental temperature 
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with ΣAY = 476.19 W/K: 
 
 

( ) Cei °=+=∴ 1.43.7819.476
2246''θ  

 
Peak internal environmental temperature 

Ceieiei °=+=+= 1.321.428''' θθθ  
 

Element A Y AY 
External wall 9 0.91 8.19 
Window 6 2.9 17.4 
Internal walls 51 3.6 183.6 
Floor  30 2.9   87 
Ceiling  30 6 180 
ΣAY  476.19 


