
ME404: Numerical methods - buildings 
 
The principle of superimposition, which underpins the response function method, has long 
been used by modellers to determine the response of a system to a set of excitations.  This 
entails summing the responses, determined independently, of the system's component parts.  
If these parts are strongly interacting, as in the case of buildings and their environmental 
control systems, then this will lead to an inherent inaccuracy because the parts are decoupled.  
The practice of assuming model parameters (e.g. surface heat transfer coefficients, fabric 
conductivity etc. to be time invariant has the effect of decoupling parts and thereby rendering 
the principle of superimposition acceptable. 
 
In the context of design tools intended to provide an early indication of performance trends, 
the response function and numerical modelling approaches are equally apt.  Both can handle 
the dynamic interactions occurring within buildings, with the linearity and invariability 
assumptions of the former method being largely acceptable in terms of tool purpose. It is 
when this purpose changes to that of emulating reality that a clear distinction emerges.  The 
response function method is a specific analytical technique, mathematically elegant and the 
outcome of many years of accumulated research and development.  However, it is a technique 
which essentially emerged in response to the need to introduce dynamic considerations into 
manual methods. Numerical methods, on the other hand, evolved as a result of the dramatic 
inflation in computing power. The generality of these methods allow their direct application 
to the spectrum of target domains – building heat transfer, HVAC psychrometric processes, 
control, indoor air quality, electrical power flow, renewable energy conversion etc. – and, 
more significantly, to the integration of these domains. 
 
Figure 1 summarises some of the domains that are candidates for coupling within a numerical 
simulation program. First order couplings include, but are not limited to, building thermal 
processes and natural illuminance distribution; building and plant thermal processes and 
distributed fluid flow; building thermal processes and intra-room air movement; building 
distributed air flow and intra-room air movement; electrical demand and micro power systems 
(renewable energy based or otherwise); and construction heat and moisture flow. 

Figure 1: Examples of coupled technical domains. 
 
Numerical methods are based on an approximation of some governing partial differential 
equation, such as the Fourier heat equation, which is applicable to regions where conduction 
prevails, or the Navier-Stokes momentum equation relating to fluid flow.  This approximation 
is usually achieved by truncated Taylor series expansion or by application of conservation 
principles to small control volumes. 



1. Equation formulation 
 
Consider figure 2, which shows a continuous function f(γ) over the range between (γ-δγ) and 
(γ+δγ). The replacement of the derivatives of f(γ) by finite differences involves expressing 
these derivatives in terms of a truncated Taylor series expansion: 
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where f n(γ) = d nf(γ)/dγn.  

Figure 2: A continuous function of γ. 
 
Adding these last two equations through those terms involving (δγ)3 gives a central difference 
approximation for the second order derivative: 
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where ε[(δγ)2] indicates that the truncation error resulting from the approximate representation 
of the second order derivative is of order (δγ)2; that is halving the discretisation step will 
approximately quarter the error. 
 
Subtracting the second equation from the first through those terms involving δγ likewise gives 
a central difference approximation but for the first order derivative: 
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Alternatively, truncating the first equation after the term involving δγ gives a first forward 
difference representation for the first order derivative: 
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while application of a similar truncation to the second equation gives a first backward 
difference representation: 
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Note that the truncation error associated with equations (3) and (4) is of order δγ, that is 
halving the discretisation step will only approximately half the error. Alternative mixes of 
equations (1) through (4) can be employed to give explicit and implicit difference 
formulations that enable the solution of systems governed by partial differential equations. 



For example, figure 3 shows a homogeneous construction layer located within a multi-layered 
construction.  

Figure 3: A homogeneous layer with space and time nodal scheme imposed. 
 
The conduction of heat within such a system is governed by the Fourier equation, stated here 
in one space dimension and with heat generation: 
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An explicit scheme is obtained by replacing the second and first order derivatives in equation 
(5) by the central and first forward difference representations of equations (1) and (3) 
respectively. Ignoring the error term, this gives for node I at time t: 
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which, on rearrangement, gives 
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Note that the sum of the present time-row temperature term coefficients is unity implying 
that, in the absence of heat generation, the future time-row nodal temperature of any region I 
is a weighted average of the present time-row temperature in that region and the temperatures 
in adjacent regions, I+1 and I-1. If an equation of this form can be written for every region 
within a construction then, given initial and boundary conditions, the discrete temperature 
history over any required period can be determined. Explicit schemes of this type are 
relatively easy to formulate and solve but will become unstable if the coefficient of the 
present time-row temperature term of region I becomes negative, that is 
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because this implies that the warmer region I is now, the colder it must be after a δt time step. 
To avoid this absurdity, a stability criterion is introduced: 
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where F is the Fourier number, defined as the ratio of the rate of heat conduction to heat 
storage.  High values represent good conductors with relatively poor storage potential, while 
low values represent poor conductors with relatively good storage potential. 
 
An implicit scheme is one in which the unknown temperature θ(I,t+δt) is expressed in terms 
of both the future and present time-row temperatures prevailing in all regions in thermal 
contact. Any given system will therefore be represented by a connected set of algebraic 
equations, which must be solved simultaneously at each simulation time-step. The second 
order derivative of equation (5) is replaced by the central difference formulation of equation 
(1) but using the unknown temperature values at the future time-row rather than the known 
values at the present time-row as in the explicit scheme. The first order derivative is expressed 
in the first backward formulation of equation (4). Ignoring the error term, this gives 
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which, on rearrangement, gives 
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Implicit formulations are unconditionally stable for all space and time discretisation schemes 
although large space or time steps will result in excessive discretisation error. A weighted 
average of equations (6) and (7) gives rise to a numerical approximation to equation (5) that 
gives best accuracy and flexibility. This is done by multiplying equation (7) by a weighting 
factor, 0 ≤ W ≥ 1, and adding the result to equation (6) after multiplication by (1-W):  
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Setting W≥0.5 gives an implicit scheme, with W=0.5 resulting in the commonly used Crank-
Nicolson formulation much favoured because of its stability combined with accuracy. 
 
Differencing by Taylor series expansion is a formal way to establish a finite difference 
scheme from a known partial differential equation.  Unfortunately the technique can be 
difficult to apply in all but simple problems.  With energy systems typical complications 
include: 

• the simultaneous presence of multiple heat transfer processes (conduction, convection, 
radiation, advection and heat generation); 

• the time and positional dependency of heat generation due to solar radiation, 
mechanical plant etc.; 

• the use of a discretisation method that leads to non-homogeneous, anisotropic finite 
volumes; and 

• the presence of multi-dimensional effects. 
 
An alternative approach is to directly apply conservation principles to small control volumes 
established to represent the physical system. This ensures that the resulting solution satisfies 
the conservation laws even if the number of control volumes is small (although in such a case 
discretisation errors might well dominate and/or the underlying physical models become 
badly represented). 
 
Consider figure 4, which shows a control volume, I, communicating thermodynamically with 
four surrounding regions via the processes of conduction, convection, radiation and mass 
exchange (e.g. air and/or moisture flow).  Internal heat generation is also considered to take 
place within the control volume (because of an electrical current or solar flux penetration for 
example). 



Figure 4: Energy exchanges in a physical system. 
 
Assuming for the present purpose only that the inter-region heat exchange can be represented 
as a linear function of the temperature difference, each flow-path may be represented by 
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where KJ,I is a heat flow conductance (W/°C). 
 
The rate of heat storage within the region over some finite time interval, δt, is given by 
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where ρI(ξ) is the density of region I at time ξ, CI(ξ ) the specific heat capacity and δVI(ξ ) the 
region volume. 
 
Now, in the limit, the rate at which heat is being stored within I can be equated to the net rate 
of heat flow to the region and so, for the system of figure 4, heat balance considerations yield 
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Evaluation of the heat flux and generation terms at the present time-row, ξ=t, gives the 
explicit formulation, while evaluation at the future time-row, ξ=t+δt, gives the fully implicit 
formulation.  As above, an explicit/implicit mix can be obtained as a weighted summation of 
both schemes, which for a conduction problem becomes: 
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where Cs(ξ ) is the self-coupling coefficient at time ξ (=t or t+δt), Cc(ξ ) the cross-coupling 
coefficient, and N the number of inter-nodal contacts. 
 
Most energy systems can be represented by three basis node types: 

1. Nodes that represent the transient conduction within the materials comprising the 
building fabric, room contents and plant components. 

2. Nodes that represent the energy balance at bounding surfaces such as indoor finishes, 
exposed roofs/walls and heat transfer interfaces within plant components. 

3. Nodes that represent the energy balance within fluid volumes such as portions of room 
air or pipes and ducts. 

 
Transient conduction 
Figure 5 shows discrete regions, denoted I, I-1, I+1, J-1 etc., in conductive communication.  
Within this scheme, node I represents the discrete finite volume given by 

(δI,I-1+ δI,I+1) (δI,J-1+ δI,J+1) (δI,K-1+ δI,K+1). 
 

  



Figure 5: Transient conduction nodal scheme. 
 
Application of equation (8) to such a case yields the unidirectional energy balance equation 
for an arbitrary placed node I: 
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Surface energy balance 
 
Consider figure 6, which shows node I now located at some arbitrary surface. Node I-1 is the 
adjacent node buried within the material of the next-to-surface layer, J±1 and K±1 are the 
adjacent surface nodes, and I+1 the adjacent fluid volume. 

Figure 6: Surface energy balance nodal scheme. 



The unidirectional heat balance equation for this case is given by 
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Fluid volumes 
 
Figure 7 shows the case where node I is located at the centroid of some fluid volume bounded 
by a collection of fictitious and/or real faces comprising the interfaces with adjacent fluid 
volumes, exposed surface layers, ambient conditions, plant components etc. 

Figure 7: Fluid volume energy balance nodal scheme: 
(a) fluid contained by real surfaces; convective heat transfer 

(b) fluid contained by fictitious surfaces; advective heat transfer. 
 
The unidirectional heat balance equation for this case is given by 
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2. Formulating the overall system equations 
 
The formulation of a complete numerical model is essentially a three stage process as follows. 
 

1. The energy system is made discrete by the placement of 'nodes' at points of interest.  
These nodes represent homogeneous or non-homogeneous physical volumes 
corresponding to room air, opaque and transparent boundary surfaces, constructional 
elements, plant component parts, renewable energy components and so on. 

2. For each node in turn, and in terms of all other nodes representing regions deemed to be 
in thermodynamic contact, conservation equations of the above form are developed to 
represent the nodal condition and the inter-nodal transfers of energy, mass and 
momentum. 

3. The entire equation-set is solved simultaneously for successive time steps to obtain the 
future time-row nodal state variables as a function of the present time-row states and 
prevailing boundary conditions at both time-rows. 

 
There are two main types of error associated with finite differencing schemes: rounding errors 
and discretisation errors. The former occur in cases where computations include an 
insufficient number of significant figures. Any tendency towards an accumulation of such 
errors can rapidly become critical, especially in large numerical schemes involving many 
computational operations.  Fortunately, errors of this type can be reduced to insignificance by 
the careful design of the numerical scheme and by operating, where appropriate, in double 
precision. 
 
Discretisation errors result from the replacement of derivatives by finite differences. Although 
unavoidable, such errors can usually be minimised by reducing the space and time 
increments. Whilst accuracy considerations dictate that such increments be small, 
considerations of computational speed require that they be made relatively large. Although it 
is impossible to predetermine the space and time increments for a given accuracy level, 
optimum values can be ascertained from simple parametric studies using the developed 
model. This implies that a model must first be developed against the assumption that any 
increment is possible. This greatly promotes the use of implicit formulations because they are 
unconditionally stable and, if well designed, consistent with the original partial differential 
equation-set. 
 



In schemes involving more than one space dimension it is not possible to prescribe the nodal 
placements since this will depend on such factors as internal and external surface insolation, 
the existence of localised convection, the presence of corner effects and thermal bridges, and 
the shape of the capacity/insulation system being modelled: all factors causing position 
dependent transient effects. Nevertheless, in many applications n-dimensional schemes will 
become necessary, with mixed-dimensional schemes proving useful.  Figure 8, for example, 
gives some example mixed schemes and their corresponding application. 

Figure 8: Some mixed nodal schemes and their typical applications: 
(a) corner effects – a combined one- and two-dimensional scheme; 

(b) surface temperature gradient – a two-dimensional scheme. 
 
Likewise, it is not possible to prescribe the spatial subdivision of fluid volumes (room air, 
boiler combustion chamber, wall cavity etc.) although a number of general points can be 
made. It is usually desirable to subdivide the volume vertically to include the buoyancy 
effects of density variations resulting in stratification. Local, fine discretisation will be 
required adjacent to bounding surfaces – to allow the effects of solar patch movement to be 
studied or to support a link between the building fabric and an adjacent computational fluid 
dynamics domain. Global, fine discretisation will be required where intra-space air 
movement, comfort distribution and indoor air quality are the issues to be studied. In general 
terms, the subdivision criteria will depend on the expected variations of fundamental thermo-
physical properties and heat fluxes throughout the system, on the extent to which distinct 
regions will be subjected to control action, and the ultimate simulation objectives.  
 
Equation structuring 
 
Utilising the above formulations it is possible to construct a mathematical model of a real 
scale problem.  The procedure involves devising a suitable discretisation scheme, generating 
the corresponding conservation equations, and arranging for equation-set solution when parts 
of the problem are constrained by control action. 
 
This section demonstrates equation structuring by presenting some example problems that 
demonstrate the form of the overall matrix equation to result. 
 



Figure 9 shows a single zone comprising 6 multi-layered constructions, 6 surface layers and 2 
fluid volumes. A rudimentary nodal scheme is imposed to represent uni-directional transient 
conduction, surface exchanges and the exchange of air between lower and upper portion.  The 
entire system is represented by 50 nodes and so there will be 50 simultaneous equations each 
comprising one self- and several cross-coupling coefficients relating to the present and future 
time-rows of the computational time steps throughout the simulation period.. 

Figure 9: A single zone system and equivalent nodal scheme. 
 
Figure 10 shows the form of the A coefficients matrix of the overall equation-set: 

A.θn+1 = B.θn + C … (9) 
 
The A matrix is not square since coefficients relating to future time-row boundary nodes are 
retained on the left-hand side (future time-row) of each equation even though, in any given 
problem, their numerical value is known.  This is necessary to allow matrix interlocking when 
other components or building zones are added to effectively remove the problem boundary 
elsewhere. Even when boundary condition terms are removed to the equation right-hand side, 
the A matrix will remain non-square for all systems in which some nodal heat 
injection/extraction is to be determined as a function of user-specified control constraints.  
The solution of the above equation-set can then be achieved by the inclusion of negative 
feedback or feed-forward control action. Alternatively, the coefficient entry relating to the 
heat interaction terms can be replaced by a plant matrix equation which is interlocked with the 
various building zones. 
 
The two-dimensional arrays A and B have the same number of rows as system equations and 
any existing element aij or bij (i ≠ j+1) is a coefficient which links two nodal regions at the 
future and present time-rows respectively of the time step for which the matrix was 
established. Any zero valued element indicates that no coupling exists between the nodal 
regions in question.  Elements aii+1 and bii+1 are self-coupling coefficients, which represent the 
storage potential of the region represented by equation i. The column matrices θn+1 and θn 



contain the nodal temperature terms and heat injection/extractions at the future and present 
time-rows respectively. The column matrix C contains the known boundary condition 
excitations due to the temperature and heat flux fluctuations that act on selected nodes to 
cause energy flow and so `drive' a simulation. 

 
Figure 10: The future time-row coefficients matrix A of the single zone 

matrix equation A.θn+1 = B.θn + C. 
 
Since all terms on the right-hand side of equation (9) relate either to the known present time-
row (B and θn) or are known boundary terms (C), it is appropriate to generate a column 
matrix Z where Z = Bn + C. Equation (9) can then be re-expressed as 

A.θn+1 = Z 
and the solution by 

θn+1 = A-1.Z. 
 
Various techniques exist to achieve this solution with the outputs supporting an assessment of 
energy and comfort, and providing details on the contribution of issues such as infiltration & 
ventilation, short- & longwave radiation, casual gains and so on.  Such outputs would not 
support the study of localised convective phenomena, thermal bridging, indoor air quality or 
the assessment of plant performance to predict energy consumption.  For this purpose the 
nodal network must be extended. 
 
Figure 11 shows several single zones combined to form a small multi-zone system with a 
central boiler and distributed radiator system superimposed. Again, transient conduction is 



uni-directional (for clarity) but in one zone a multi-directional scheme has been incorporated 
to facilitate the study of corner effects and thermal bridges. A simple nodal scheme is used to 
represent distribution losses, with a more detailed scheme applied to the various boiler 
sections. 

Figure 11: A multi-zone building with boiler and distributed radiator scheme. 
 
Figure 12 gives the equivalent equation system. This model will allow, in addition to the 
analysis potential of the previous example, a detailed investigation of the energy and comfort 
related aspects of building performance: building and plant zoning strategies, global versus 
zone level control, whole building energy requirements and consumption, boiler efficiency 
studies, distribution losses, priority and optimum start control regimes, to name but a few. 
 
3. Solving the system equations 
 
Because the system of equations contain both present and future time-row terms, they must be 
solved simultaneously. And because the entire system is sparse and populated by clusters of 
equations relating to components with different time constants, a specially adapted solver will 
be required to minimise the computational effort. 
 
There are two main solution techniques: iterative and direct.  In general terms, direct methods 
require more storage space than do iterative methods and may prove inefficient when applied 
to large, sparse equation systems as is the case here.  However, direct methods may be used as 
the building block of an efficient solver for sparse equation systems where different equation 
clusters are processed at a different frequency depending on the time constant of the 
corresponding physical system.  This allows control decisions to be made, and thermo-



physical properties recomputed, more frequently for an item of plant requiring a 
computational time-step of, say, 1 minute, than for a heavyweight construction requiring, say, 
60 minutes.  Such an approach to solution ensures that only the actual physical scheme is 
addressed by partitioning the overall (and sparse) system matrix into a number of discrete 
sub-matrices so that solution can be achieved in the lowest number of computational steps 
(because the capabilities and features of simulation programs are constantly evolving, 
computation times are still problematic despite advances in processor technology). Each 
partitioned matrix can then be processed as far as possible by a direct method, and at any 
frequency, with the inter-component information brought together to permit the global 
solution stream to continue.  As circumstances allow, any sub-matrix need not be reprocessed 
until its contents (the equation coefficients) have changed by an appreciable amount. 

Figure 12: The energy balance matrix equation for the system of figure 11. 
 


