
ME404 Fluid flow 
 
Buildings and their energy supply systems (conventional and renewable) can be thought of as 
comprising three interacting fluid flow domains as summarised in figure 1: 

1. air/vapour flow through cracks and openings in the building envelope allowing infiltration 
and natural ventilation; 

2. the flow of air/vapour through the leakage paths connecting internal spaces and the 
distribution networks that exist to service the building's heating, cooling and ventilation 
demands; and 

3. the movement of air/vapour/pollutants within the interior spaces of the building or the 
movement of working fluids within plant components. 

Figure 1: Building fluid flow domains. 
 
There are essentially two modelling approaches suitable for application to these domains: nodal 
networks (applicable to domains 1 and 2) and computational fluid dynamics (applicable to 
domain 3). 
 
1. Nodal network method 
 
The building and its air handling systems are treated as a collection of nodes representing rooms 
(or parts of rooms), equipment connection points, ambient conditions etc.  Inter-nodal 
connections are then defined in terms of components such as cracks, doors, fans, ducts etc, each 
represented by a model that gives the mass flow rate as a function of the pressure difference 
across the component.  Consideration of the conservation of mass at each node leads to a set of 
non-linear equations that can be solved at successive time steps to characterise the flow 
throughout the defined network. 
 
The method is constrained to the steady flow of an incompressible fluid within a network of 
connected pressure points (nodes) when subjected to successive sets of boundary conditions. In 
other words, the problem reduces to the calculation of the mass flows through each connection 
when the nodes represent internal (unknown) and external (known) pressures.  Solution for a 
particular boundary condition is achieved by an iterative approach in which the unknown nodal 
pressures are repeatedly adjusted until the nodal mass imbalances (residuals) are reduced to 
insignificance.  The flow network may comprise sub-networks, each relating to a different fluid 
type. 
 



Boundary conditions 
 
In the case of buildings, the surface pressure distribution is wind induced.  Its prediction requires 
information on the prevailing wind\(emits speed, direction and vertical velocity profile – and, 
more problematic, the influence of local obstructions and terrain features.  Two approaches to the 
determination of surface pressure distribution are extant: wind tunnel tests applied to scale 
models, and the use of mathematical models.  Whatever the approach, it is usual to express the 
outcome for a given surface in the form of a dimensionless pressure coefficient set as shown in 
figure 2. 

Figure 2: A surface pressure coefficient set. 
 
For any given wind direction, d: 

 
where Cid is the pressure coefficient for surface i and corresponding to a wind direction d, Pid the 
surface pressure (N/m2), ρ the air density (kg/m3) and vr some reference wind speed 
corresponding to direction d (m/s). 
 
A pressure coefficient set typically comprises 16 compass values at 22.5° intervals so that the 
coefficient for any particular wind direction may include the influence of an obstruction feature.  
Note that coefficients can be negative to reflect leeward exposures. Table 1 gives some example 
pressure coefficient sets for some typical exposures and building length-to-width ratios.  
 

Table 1: Pressure coefficient sets. 
Pressure coefficients at 22.5° intervals Context 
0.70/0.53/0.35/-0.08/-0.50/-0.45/-0.40/-0.30/-0.20/-0.30/-0.40/-0.45/-0.50/-0.08/0.35/0.53 
0.20/0.13/0.05/-0.10/-0.25/-0.23/-0.30/-0.28/-0.25/-0.28/-0.30/-0.28/-0.25/-0.10/0.05/0.13 

1:1 exposed wall 
1:1 sheltered wall 

0.50/0.38/0.25/-0.13/-0.50/-0.65/-0.80/-0.75/-0.70/-0.75/-0.80/-0.65/-0.50/-0.13/0.25/0.38 
0.06/-0.03/-0.12/-0.16/-0.20/-0.29/-0.38/-0.34/-0.30/-0.34/-0.38/-0.29/-0.20/-0.16/-0.12/-0.03 

2:1 exposed long wall 
2:1 sheltered long wall 

0.60/0.40/0.20/-0.35/-0.90/-0.75/-0.60/-0.48/-0.35/-0.48/-0.60/-0.75/-0.90/-0.35/0.20/0.40 
0.18/0.17/0.15/-0.08/-0.30/-0.31/-0.32/-0.26/-0.20/-0.26/-0.32/-0.31/-0.30/-0.08/0.15/0.16 

1:2 exposed short wall 
2:1 sheltered short wall 

-0.80/-0.75/-0.70/-0.65/-0.60/-0.55/-0.50/-0.45/-0.40/-0.45/-0.50/-0.55/-0.60/-0.65/-0.70/-0.75 
-0.40/-0.45/-0.50/-0.55/-0.60/-0.55/-0.50/-0.45/-0.40/-0.45/-0.50/-0.55/-0.60/-0.55/-0.50/-0.45 
0.30/-0.05/-0.40/-0.50/-0.60/-0.50/-0.40/-0.45/-0.50/-0.45/-0.40/-0.50/-0.60/-0.50/-0.40/-0.05 
-0.70/-0.70/-0.70/-0.75/-0.80/-0.75/-0.70/-0.70/-0.70/-0.70/-0.70/-0.75/-0.80/-0.75/-0.70/-0.70 
-0.70/-0.70/-0.70/-0.70/-0.70/-0.65/-0.60/-0.55/-0.50/-0.55/-0.60/-0.65/-0.70/-0.70/-0.70/-0.70 
0.25/0.13/0.00/-0.30/-0.60/-0.75/-0.90/-0.85/-0.80/-0.85/-0.90/-0.75/-0.60/-0.30/0.00/0.13 

1:1 exposed roof <10° 
1:1 exposed roof 10-30° 
1:1 exposed roof >30° 
2:1 exposed roof <10° 
2:1 exposed roof 10-30° 
2:1 exposed roof >30° 

 
Where the reference wind speed, vr, is a local wind speed, it is necessary to modify the free 
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stream wind speed as a function of any height difference and the effect of local terrain roughness. 
This requires the use of an assumed wind profile. 
 
Node definition 
 
It is assumed that nodes (representing discrete, homogeneous fluid volumes) can be characterised 
by a single temperature, a single static pressure and a height relative to some arbitrary datum.  
Table 2 lists some possible node types and their typical defining data. 
 

Table 2: Node types and defining parameters. 
Internal, unknown condition 
Internal, known condition 
Boundary, known pressure 
Boundary, wind pressure 

height 
height, total pressure and temperature 
height, total pressure and temperature 
height, pressure coefficient set, surface azimuth 

 
Of course, internal node temperatures are not required where the flow network is to be combined 
with a building/plant equation-set. 
 
Buoyancy effects 
 
Consider figure 3, which shows two zones connected by a duct. The zone height is typically given 
as the average height of all openings when expressed relative to some convenient datum. For the 
case shown, the ends of the duct are at different heights relative to each other and relative to the 
nodes representing the zones. 

Figure 3: Two connected zones. 
 
The pressure drop across the component may be determined from Bernoulli's equation for the 
one-dimensional steady flow of an incompressible fluid: 
 

… (1) 
 
where ΔP is the sum of all friction and dynamic losses (N/m2), p1, p2 the entry and exit static 
pressures (Pa), V1, V2 the entry and exit velocities (m/s), ρ the density of the air flowing through 
the component (kg/m3; i=n or m depending on the direction of the flow), g the acceleration of 
gravity (m/s2 and z1, z2 the entry and exit elevations (m).  This equation defines a sign convention 
for the flow direction: positive from point 1 to point 2 (n to m). 
 
In the above equation dynamic pressures are the ρV2/2 terms, and total pressure is defined to be 
the sum of static pressure and dynamic pressure, i.e. P = p + ρV2/2.  If nodes n and m represent 
large volumes, the dynamic pressures are effectively zero.  If the nodes represent some point in a 
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duct or pipe network, there will be a positive dynamic pressure.  The pressures at the inlet and 
outlet of the flow component can be related to the node pressures by the hydrostatic law: 

where h1 = z1 - zn, and 

where h2 = z2 - zm. 
 
Ignoring dynamic pressures, equation (1) reduces to 

 
The terms ρg(zn + h1 - zm - h2), -ρngh1 and ρmgh2 are collectively termed the stack pressure, PS, 
acting on the component: 
                                      ; for the +ve direction 
 
                                       ; for the –ve direction. 
 
Component flow models 
 
A flow component is characterised by a type (duct, pipe, pump, crack, doorway etc.) and a 
number of defining parameters. Table 3 list some typical component types and models. 
 

Table 3: Flow component types and models. 
Component Model 
Power law volume flow resistance m = ρ a ΔPn 
Power law mass flow resistance m = a ΔPb 
Power law mass flow resistance m = a√(ρ.ΔPb) 
Quadratic law volume flow resistance ΔP = a m/ρ + b(m/ρ)2 
Quadratic law mass flow resistance ΔP = a m + b m2 
Constant volume flow rate component m = ρ rv 
Constant mass flow rate component m = rm 
Common orifice flow component m = Cd A√(2ρΔP) 
Laminar pipe flow component m = ρΔP π R4/8μ Lp 
Specific air flow opening m = 0.65A√(2ρΔP) 
Specific air flow crack m = f(ρ, k, ΔP) 
Specific air flow door m = f(Wd, H, Hr, Cd, ΔP) 
General flow conduit (duct or pipe) m = Ac √((2ρΔP)/(f Lp/Dh + ΣCi)); 

       f=1/2log(5.74/Re0.901+0.27 kr/Dh)2 
General flow inducer (pump or fan) ΔP = Σ3

i=0 ai(m/ρ)i; qmn ≤ m/ρ ≤ qmx 
General flow corrector m = ρkv(ΔPρ0/ΔP0ρ) 
Flow corrector with polynomial local loss m = Ac[(2ρΔP)/C]1/2; C = Σ3

i=0ai(H/H100)i 
Ideal (frictionless) open/shut flow controller m = 0 or m = ρq 
where m is the mass flow rate (kg/s, a and b are empirical coefficients, n is an empirical exponent, rv 
the volume flow rate (m3/s), rm the mass flow rate (kg/s), A the opening area (m2), Cd the discharge 
factor (-), μ the dynamic viscosity (kg/m.s), Re the Reynolds Number, Lp the pipe length, R the pipe 
radius, Wc the crack width, Lc the crack length, Wd the door width, H the door height and Hr the door 
reference height; Dh is the hydraulic diameter, Ac the cross sectional area (m2), kr the pipe wall 
roughness (-),ΣCi the sum of the local dynamic loss factors (-), qmn & qmx the minimum and 
maximum volume flow rates respectively (m3/s), ρ & ρ0 the density and standard density respectively 
(kg/m3), ΔP0 the standard pressure (N/m2), kv the volume flow rate at ρ0 (m3/s) and H & H100 are the 
valve position and fully open position respectively; (all linear dimensions in m). 
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Each component has a corresponding model for the evaluation of the flow rate as a function of 
the pressure drop.  For example, a valve may be represented as a conduit with an empirically 
derived dynamic loss factor, C (-), which is dependent on the valve stem displacement. The mass 
flow rate, m, may then be calculated from 
 

m = A(2ρΔP/C) 1/2 
 

C = a0 + a1 H/H100 + a2(H/H100)2 + a3(H/H100)3 
 
where A is the cross-sectional area containing the corrector (m2), H/H100 is the relative valve 
position (-), and ai are fit coefficients (-). 
 
In general, the equations that represent the air mass flow rate through simple restrictions may be 
expressed by an equation of the form 
 

m = k.aΔPx 
 
where ΔP is the pressure difference across the restriction (N/m2), k an empirical constant that 
depends on the nature of the flow restriction, ‘a’ a characteristic dimension such as length or area, 
and x an empirical exponent. 
 
For a simple orifice at high Reynolds Number (such as a partially open window), x is close to 0.5.  
For cracks and similar restrictions with a large aspect ratio, x is close to 0.65, rising to unity for 
completely laminar flow.  For this class of flow restriction empirical relationships have been 
established to determine x and k as a function of crack width: 
 

x = 0.5 + 0.5 exp(-W/2) 
k = 9.7(0.0092)x 

 
where W is the crack width (mm) and therefore ‘a’ becomes the crack length. 
 
With open windows the flow rate (m3/s) may be determined from 
 

q = CdA√2ΔP/ρi  
 
where Cd is the discharge coefficient (-), A the opening area (m2), ΔP the pressure difference 
across the opening (Pa) and ρi the density of the incoming air (kg/m3). 
 
With large vertical openings, such as doorways, more complex flow patterns occur.  If a  
temperature difference exists across such an opening, then air flow can occur in both directions 
due to the action of small density variations over the door height causing a positive pressure 
difference at the bottom (or top) of the opening with a corresponding negative pressure difference 
at the top (or bottom). This situation is illustrated in figure 4. A typical expression for the air flow 
through such an opening might appear as follows. 
 

v = (2/3)[CDWh(2/ρ)1/2 (Ca
1/2 - Cb

1/2)/Ct] 
 
where CD is the discharge coefficient (-), W the opening width (m), h the height (m), Ca = (1 - 
rp)Ct + (P1 - P2), Cb = (P1 - P2) - rpCt, Ct = gPah/R(1/θ2 – 1/θ1), θ1, θ2 the absolute temperatures on 
either side of the opening (K), Pa the atmospheric pressure (N/m2), P1, P2 the pressures on either 
side (N/m2), R the gas constant (J/kgK), rp = hp/h and hp is the height of the reference nodes on 



either side (m). On evaluation, this equation yields a sum of real and imaginary parts. Real parts 
indicate a flow in the positive direction, while imaginary parts indicate a flow in the reverse 
direction. 

Figure 4: Bi-directional air flow across a doorway. 
 
The neutral height hn – the height at which no net pressure difference can be measured across an 
opening – is found from 

hn = h(rp – (P1 - P2)/Ct) . 
 
 
Iterative solution procedure 
 
Each non-boundary node is assigned an arbitrary pressure and the connecting components' flow 
rates determined from the corresponding mass flow model as described in the previous section.  
The nodal mass flow rate residual (error), Ri (kg/s), for the current iteration is then determined 
from 

where mk is the mass flow rate along the kth connection to node i and Ki is the total number of 
connections linked to node i. 
 
These residuals are used to determine nodal pressures corrections, P*, for application to the 
current pressure field, P: 

P* = P - C 
 
where C is a pressure correction vector.  The process, which is equivalent to a Newton-Raphson 
technique, iterates until convergence is achieved.  In the method C is determined from 

 
C = J-1 R 

 
where R is the vector of nodal mass flow residuals and J-1 is the inverse of the square Jacobian 
matrix whose diagonal elements are given by 

 
where L is the total number of connections linked to node n.  This is equivalent to the rate of 
change of the node n residual with respect to the node pressure change between each iteration. 
The off-diagonal elements of J are the rate of change of the individual component flows with 
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respect to the change in the pressure difference across the component (at successive iterations): 

where M is the number of connections between node n and node m.  Note that for internal nodes 
the summation of the elements comprising each row of the Jacobian matrix are identically zero. 
 
Conservation considerations applied to each node then provide the convergence criterion at all 
internal nodes: 

 
In practice, the foregoing solution technique may be expected to solve even complex networks in 
a few iterations.  This means that, unlike CFD, the network air flow method will not impose a 
significant computational burden.  This renders the method most suitable for the modelling of 
combined thermal and flow problems.  
 
The above approach can also be applied to form an electrical power flow model in which an 
electrical circuit is conceived as a network of nodes representing the junctions between 
conducting elements and locations where power is extracted to feed loads or added from the 
public electricity supply or local renewable energy systems. The solution of such a power flow 
network requires models for the connecting components (e.g. conductors), sources of power (e.g. 
photovoltaic components and wind turbines) and loads. 
 
2. Computational fluid dynamics 
 
This method is based on the solution of the conservation equations for mass, momentum and 
energy at discrete points within a room or plant component. For a given boundary condition, 
numerical methods are employed to solve for the temperature, pressure and velocity fields.  It is 
also possible to determine the distribution of water vapour or pollutants, and to assess the mean 
age (freshness) of air at different locations within a room.  Such information is the prerequisite of 
an appraisal of indoor air quality and discomfort. 
 
Although well adapted for building energy application, the nodal network method is limited when 
it comes to consideration of indoor comfort and air quality.  Because momentum effects are 
neglected, intra-room air movement cannot be studied, while surface convection heat transfer 
regimes cannot be evaluated because of the low resolution. To overcome these limitations, it is 
necessary to introduce a computational fluid dynamics (CFD) model whereby intra-zone air 
movement may be evaluated and the distribution of the principal parameters determined. 
 
CFD is a complex development field with a rapidly evolving state-of-the-art and general 
applicability.  In recent years its application to buildings – a non-steady, mixed flow (turbulent, 
laminar and transitional) problem – has grown significantly and attempts have been made to 
combine CFD and building energy models, to extend CFD to include building features and to 
develop techniques for the realistic representation of HVAC components such as diffusers. 
 
Essentially, a building-integrated CFD model comprises the following elements: room 
discretisation; a set of equations to represent the conservation of energy, mass, momentum and 
species; the imposition of boundary conditions; an equation solver; and a method to link the CFD, 
building thermal and network air flow models. 
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Domain discretisation 
 
The starting point is to sub-divide the room into a number of finite volumes so that conservation 
equations for mass, momentum, energy and species concentration may be established and solved 
for the entire domain. While curvilinear co-ordinate systems are commonly employed in CFD 
analyses, in building applications the geometries are typically orthogonal, facilitating the three 
dimensional Cartesian grid technique as illustrated in figure 5 in which each dimension is divided 
into a number of regions – here 3 in the x-direction and 2 in the z-direction; the y-direction is not 
shown. The regions are then gridded using a constant or variable spacing. 

Figure 5: CFD domain discretisation. 
 
Consider the x-direction: the region located to the left of the door has a variable grid which 
increases with increasing i, the door region has a constant grid, while the region located to the 
right of the door decreases with increasing i. Other approaches are possible, and some of these are 
suited to the case of low Reynolds Number models where the near-wall grid is made especially 
fine. 
 
For the case of non-rectangular geometries, or where internal obstructions are present, the above 
technique may be applied to a rectangular bounding box but with the boundary of the non-
participating cells treated as solid surfaces and assigned a boundary condition as shown in figure 
6 (lower left). 

Figure 6: Treatment of complex geometries. 



Alternatively, a block structured approach may be employed (figure 6, upper right) whereby the 
problem is reduced to separate domains which are then processed independently with the mass, 
momentum, energy and species exchanges at the interfaces reconciled after each iteration.  Such a 
treatment facilitates the parallel processing of domains but will result in a large number of 
domains for cases where internal objects are included. 
 
To accommodate the range of commonly encountered room shapes, the gridding scheme may be 
extended to allow one or more of the three dimensions to be non-orthogonal (figure 6, lower 
right). 
 
Conserving energy, mass, momentum and species concentration 
 
The movement of room air and contaminants may be determined from the solution of discretised 
mass, momentum, energy and concentration equations when subject to given boundary 
conditions. In the context of building simulation, the Boussinesq approximation is usually applied 
whereby the air density is held constant and the effects of buoyancy are included within the 
momentum equation. In tensor notation, the conservation equations are as follows. 
 
Continuity 

Momentum 

Energy 

 
Concentration 

 
where t is time (s), xi the co-ordinate axis (= x, y and z), ρ density (kg/m3), ui the velocity 
component in the cardinal directions (= u, v, w; m/s), p the pressure (N/m2), g the gravitational 
constant (m/s2), μ the viscosity (kg/m.s), H the specific enthalpy (J/kg.K), C the species 
concentration (kg/kg), k the conductivity (W/m.K), D the species diffusion coefficient (m2/s) for 
moisture, CO2 etc., Cp the specific heat (J/kg.K), β the thermal expansion coefficient of air (1/K), 
θ∞ a reference temperature (°C) and SH, SC energy and species source terms respectively (W/m3 
and kg/m3.s). 
 
Direct solution of the above conservation equations is non-trivial task because extremely fine 
meshes are required to resolve turbulent fluctuations. Instead, the turbulence transport technique 
is often employed whereby the instantaneous values of temperature, concentration, velocity, 
pressure etc. are represented as the sum of their mean and fluctuating components, and the effect 
of turbulent motion is time-averaged. This gives rise to the following mean conservation equation 
for an incompressible fluid: 
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where φ is a transport variable such as continuity (φ = 1), enthalpy, concentration of contaminant 
or velocity; ρ (kg/m3), Γφ a diffusion coefficient, Ui a mean velocity component (U, V, W), and Sφ 
a mean source term. In words, the above equation can be read as 
 

The rate of increase of φ within a fluid element = the rate of increase of φ due to diffusion 
- the net rate of flow of φ out of the element + the rate of increase of φ due to sources. 

 
To overcome the difficulties of directly modelling turbulent flows, a turbulence transport model is 
normally used whereby the influence of turbulence on the time averaged motion of air may be 
determined.  Of the possible turbulence transport models, the standard k-ε model is widely used 
because of its general applicability and reasonable accuracy.  Its function is to determine the eddy 
viscosity at each grid point (as used in the momentum equation) as a function of local values of 
the turbulent kinetic energy (k) and its rate of dissipation (ε): 
 

μt = ρCμk2/ε 
 
where Cμ is a dimensionless constant and equations exist to estimate k and ε. 
 
Because the standard k-ε model is valid only for turbulent flow regions, it cannot be used to 
represent the near-wall condition where viscous effects predominate and the flow is laminar.  
Instead, logarithmic wall functions are usually employed whereby the form of the velocity and 
temperature profile within the boundary layer is assumed in order to determine the surface shear 
stress and convective heat transfer. An alternative approach is to utilise wall functions derived for 
the specific case in hand or to replace the wall functions with empirical data. 
 
Whatever the approach, the problem reduces to a set of time-averaged nodal conservation 
equations for U, V, W, H, C, k and ε.  These conservation equations may be discretised by the 
finite volume method to obtain a set of linear equations. Because these equations are strongly 
coupled and highly non-linear – that is the equation coefficients and source terms are dependent 
on the state variables – they must be solved iteratively for a given set of boundary conditions.  
Moreover, when conflated with the building thermal and network air flow models, the CFD 
domain equations must be solved in tandem with the other domain equations and repeatedly at 
each time row throughout a simulation. 
 
Initial and boundary conditions 
 
Initial values of ρ, ui and H are required at time t=0 for all domain cells.  For solid surfaces, the 
required boundary conditions include the temperature (or flux) at points adjacent to the domain 
cells. For cells subjected to an in-flow from ventilation openings and doors/windows, the 
mass, momentum, energy & species exchange must be given in terms of the distribution of 
relevant variables of state – U, V, W, H, k, ε and C. At outlets, the normal practice is to impose a 
constant pressure and the conditions ∂un/∂n = 0, ∂H/∂n = 0, ∂k/∂n = 0, ∂ε /∂n = 0, where n 
indicates the direction normal to the boundary. 
 
Iterative solution procedure 
 
The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method is commonly used 
to solve the set of elliptic flow equations.  Essentially, the pressure of each domain cell is linked 
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to the velocities connecting with surrounding cells in a manner that conserves continuity.  The 
method accounts for the absence of an equation for pressure by establishing a modified form of 
the continuity equation to represent the pressure correction that would be required to ensure that 
the velocity components determined from the momentum equations move the solution towards 
continuity.  This is done by using a guessed pressure field to solve the momentum equations for 
intermediate velocity components U, V and W.  These velocities are then used to estimate the 
required pressure field correction from the modified continuity equation. The energy equation, 
and any other scalar equations (e.g. for concentration), are then solved and the process iterates 
until convergence is attained. To avoid numerical divergence, it is usual to apply under relaxation 
to the pressure correction terms.  
 
Variants of the SIMPLE algorithm have been developed in order to reduce the computational 
burden and assist convergence. These include SIMPLE-Revised, in which the pressure field is 
obtained directly (i.e. without the need for correction) from a pressure equation derived from the 
continuity equation, and SIMPLE-Consistent, in which the simplifications applied to the 
momentum/continuity equations to obtain the pressure field correction are less onerous. 
 
Results interpretation 
 
The information inherent within the CFD results is usually communicated graphically.  For 
example, figure 7 shows the distribution of the mean age of air for a representative 2D room slice, 
which indicates the distribution of air freshness, a prerequisite of any indoor air quality 
assessment. This, along with similar outputs for the other principal parameters (humidity, 
contaminants, radiant temperature etc.), may then be used to assess the indoor air quality and 
thermal discomfort according to some appropriate standard.  

Figure 7: Distribution of the local mean age of air. 
 
The conflation of CFD and building simulation gives rise to a significant number of relevant 
indicators, including but not limited to: 

1. the variation in vertical air temperature between floor and head height; 
2. the absolute temperature of the floor; 
3. radiant temperature asymmetry; 
4. unsatisfactory ventilation rate; 
5. unsatisfactory CO2 level; 
6. local draught assessed on the basis of the turbulence intensity distribution; 



7. additional air speed required to off-set an elevated temperature; 
8. comfort check based on effective temperature; 
9. mean age of air. 

 


